1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
#![deny(missing_docs)]

//! # pocket_prover
//! A fast, brute force, automatic theorem prover for first order logic
//!
//! - For generic automated theorem proving, see [monotonic_solver](https://github.com/advancedresearch/monotonic_solver)
//! - For a debuggable SAT solver, see [debug_sat](https://github.com/advancedresearch/debug_sat)
//!
//! ```rust
//! extern crate pocket_prover;
//!
//! use pocket_prover::*;
//!
//! fn main() {
//!     println!("Socrates is mortal: {}", prove3(&mut |man, mortal, socrates| {
//!         // Using `imply` because we want to prove an inference rule.
//!         imply(
//!             // Premises.
//!             and(
//!                 // All men are mortal.
//!                 imply(man, mortal),
//!                 // Socrates is a man.
//!                 imply(socrates, man),
//!             ),
//!
//!             // Conclusion.
//!             imply(socrates, mortal)
//!         )
//!     }));
//! }
//! ```
//!
//! ### Motivation
//!
//! The motivation is to provide the analogue of a "pocket calculator",
//! but for logic, therefore called a "pocket prover".
//!
//! This library uses an approach that is simple to implement from scratch in a low level language.
//!
//! This is useful in cases like:
//!
//! - Study logic without the hurdle of doing manual proofs
//! - Checking your understanding of logic
//! - Verify that logicians are wizards and not lizards
//! - Due to a series of unfortunate events, you got only 24 hours to learn logic and just need the gist of it
//! - Memorizing source code for situations like [The Martian](http://www.imdb.com/title/tt3659388/)
//! - A tiny mistake and the whole planet blows up (e.g. final decisions before the AI singularity and you need to press the right buttons)
//!
//! ### Implementation
//!
//! This library uses brute-force to check proofs, instead of relying on axioms of logic.
//!
//! 64bit CPUs are capable of checking logical proofs of 6 arguments (booleans)
//! in O(1), because proofs can be interpreted as tautologies (true for all input)
//! and `2^6 = 64`.
//!
//! This is done by replacing `bool` with `u64` and organizing inputs
//! using bit patterns that simulate a truth table of 6 arguments.
//!
//! To extend to 10 arguments, `T` and `F` are used to alternate the 4 extra arguments.

/// 0xaaaa_aaaa_aaaa_aaaa
pub const P0: u64 = 0b10101010_10101010_10101010_10101010_10101010_10101010_10101010_10101010;
/// 0xcccc_cccc_cccc_cccc
pub const P1: u64 = 0b11001100_11001100_11001100_11001100_11001100_11001100_11001100_11001100;
/// 0xf0f0_f0f0_f0f0_f0f0
pub const P2: u64 = 0b11110000_11110000_11110000_11110000_11110000_11110000_11110000_11110000;
/// 0xff00_ff00_ff00_ff00
pub const P3: u64 = 0b11111111_00000000_11111111_00000000_11111111_00000000_11111111_00000000;
/// 0xffff_0000_ffff_0000
pub const P4: u64 = 0b11111111_11111111_00000000_00000000_11111111_11111111_00000000_00000000;
/// 0xffff_ffff_0000_0000
pub const P5: u64 = 0b11111111_11111111_11111111_11111111_00000000_00000000_00000000_00000000;
/// The False proposition.
/// Used to alternate higher than 6 arguments, set to `0`.
pub const F: u64 = 0b00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000;
/// The True proposition.
/// Used to alternate higher than 6 arguments, set to `1`.
pub const T: u64 = 0b11111111_11111111_11111111_11111111_11111111_11111111_11111111_11111111;

/// Counts the number of solutions of a 1-argument boolean function.
pub fn count1<F: FnMut(u64) -> u64>(f: &mut F) -> u32 {((f)(P0) & 0x3).count_ones()}
/// Counts the number of solutions of a 2-argument boolean function.
pub fn count2<F: FnMut(u64, u64) -> u64>(f: &mut F) -> u32 {((f)(P0, P1) & 0xf).count_ones()}
/// Counts the number of solutions of a 3-argument boolean function.
pub fn count3<F: FnMut(u64, u64, u64) -> u64>(f: &mut F) -> u32 {((f)(P0, P1, P2) & 0xff).count_ones()}
/// Counts the number of solutions of a 4-argument boolean function.
pub fn count4<F: FnMut(u64, u64, u64, u64) -> u64>(f: &mut F) -> u32 {((f)(P0, P1, P2, P3) & 0xffff).count_ones()}
/// Counts the number of solutions of a 5-argument boolean function.
pub fn count5<F: FnMut(u64, u64, u64, u64, u64) -> u64>(f: &mut F) -> u32 {
    ((f)(P0, P1, P2, P3, P4) & 0xffff_ffff).count_ones()
}
/// Counts the number of solutions of a 6-argument boolean function.
pub fn count6<F: FnMut(u64, u64, u64, u64, u64, u64) -> u64>(f: &mut F) -> u32 {
    (f)(P0, P1, P2, P3, P4, P5).count_ones()
}
/// Counts the number of solutions of a 7-argument boolean function.
pub fn count7<F: FnMut(u64, u64, u64, u64, u64, u64, u64) -> u64>(f: &mut F) -> u32 {
    (f)(P0, P1, P2, P3, P4, P5, F).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, T).count_ones()
}
/// Counts the number of solutions of an 8-argument boolean function.
pub fn count8<F: FnMut(u64, u64, u64, u64, u64, u64, u64, u64) -> u64>(f: &mut F) -> u32 {
    (f)(P0, P1, P2, P3, P4, P5, F, F).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, F, T).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, T, F).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, T, T).count_ones()
}
/// Counts the number of solutions of a 9-argument boolean function.
pub fn count9<F: FnMut(u64, u64, u64, u64, u64, u64, u64, u64, u64) -> u64>(f: &mut F) -> u32 {
    (f)(P0, P1, P2, P3, P4, P5, F, F, F).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, F, F, T).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, F, T, F).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, F, T, T).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, T, F, F).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, T, F, T).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, T, T, F).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, T, T, T).count_ones()
}
/// Counts the number of solutions of a 10-argument boolean function.
pub fn count10<F: FnMut(u64, u64, u64, u64, u64, u64, u64, u64, u64, u64) -> u64>(f: &mut F) -> u32 {
    (f)(P0, P1, P2, P3, P4, P5, F, F, F, F).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, F, F, F, T).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, F, F, T, F).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, F, F, T, T).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, F, T, F, F).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, F, T, F, T).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, F, T, T, F).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, F, T, T, T).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, T, F, F, F).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, T, F, F, T).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, T, F, T, F).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, T, F, T, T).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, T, T, F, F).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, T, T, F, T).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, T, T, T, F).count_ones() +
    (f)(P0, P1, P2, P3, P4, P5, T, T, T, T).count_ones()
}
/// Counts the number of solutions of an n-argument boolean function.
pub fn countn(n: usize, fun: &mut FnMut(&[u64]) -> u64) -> u64 {
    match n {
        0 => fun(&[]).count_ones() as u64,
        1 => count1(&mut |a| fun(&[a])) as u64,
        2 => count2(&mut |a, b| fun(&[a, b])) as u64,
        3 => count3(&mut |a, b, c| fun(&[a, b, c])) as u64,
        4 => count4(&mut |a, b, c, d| fun(&[a, b, c, d])) as u64,
        5 => count5(&mut |a, b, c, d, e| fun(&[a, b, c, d, e])) as u64,
        6 => count6(&mut |a, b, c, d, e, f| fun(&[a, b, c, d, e, f])) as u64,
        7 => count7(&mut |a, b, c, d, e, f, g| fun(&[a, b, c, d, e, f, g])) as u64,
        8 => count8(&mut |a, b, c, d, e, f, g, h| fun(&[a, b, c, d, e, f, g, h])) as u64,
        9 => count9(&mut |a, b, c, d, e, f, g, h, i| fun(&[a, b, c, d, e, f, g, h, i])) as u64,
        10 => count10(&mut |a, b, c, d, e, f, g, h, i, j| fun(&[a, b, c, d, e, f, g, h, i, j])) as u64,
        _ => {
            if n >= 19 {
                let ref mut args = vec![0; n];
                let mut sum = 0;
                for i in 0..512 {
                    args[0] = if (i & 0b1) == 0b1 {T} else {F};
                    args[1] = if (i & 0b10) == 0b10 {T} else {F};
                    args[2] = if (i & 0b100) == 0b100 {T} else {F};
                    args[3] = if (i & 0b1000) == 0b1000 {T} else {F};
                    args[4] = if (i & 0b10000) == 0b10000 {T} else {F};
                    args[5] = if (i & 0b100000) == 0b100000 {T} else {F};
                    args[6] = if (i & 0b1000000) == 0b1000000 {T} else {F};
                    args[7] = if (i & 0b10000000) == 0b10000000 {T} else {F};
                    args[8] = if (i & 0b100000000) == 0b100000000 {T} else {F};
                    sum += countn(n-9, &mut |vs: &[u64]| {
                        for i in 0..n-9 {args[i+1] = vs[i]}
                        fun(&args)
                    });
                }
                sum
            } else {
                let ref mut args = vec![0; n];
                let mut sum = 0;
                for i in 0..32 {
                    args[0] = if (i & 0b1) == 0b1 {T} else {F};
                    args[1] = if (i & 0b10) == 0b10 {T} else {F};
                    args[2] = if (i & 0b100) == 0b100 {T} else {F};
                    args[3] = if (i & 0b1000) == 0b1000 {T} else {F};
                    args[4] = if (i & 0b10000) == 0b10000 {T} else {F};
                    sum += countn(n-5, &mut |vs: &[u64]| {
                        for i in 0..n-5 {args[i+1] = vs[i]}
                        fun(&args)
                    });
                }
                sum
            }
        }
    }
}

/// Returns `true` if proposition is correct, `false` otherwise.
pub fn prove1<F: FnMut(u64) -> u64>(f: &mut F) -> bool {count1(f) == 2}
/// Returns `true` if proposition is correct, `false` otherwise.
pub fn prove2<F: FnMut(u64, u64) -> u64>(f: &mut F) -> bool {count2(f) == 4}
/// Returns `true` if proposition is correct, `false` otherwise.
pub fn prove3<F: FnMut(u64, u64, u64) -> u64>(f: &mut F) -> bool {count3(f) == 8}
/// Returns `true` if proposition is correct, `false` otherwise.
pub fn prove4<F: FnMut(u64, u64, u64, u64) -> u64>(f: &mut F) -> bool {count4(f) == 16}
/// Returns `true` if proposition is correct, `false` otherwise.
pub fn prove5<F: FnMut(u64, u64, u64, u64, u64) -> u64>(f: &mut F) -> bool {count5(f) == 32}
/// Returns `true` if proposition is correct, `false` otherwise.
pub fn prove6<F: FnMut(u64, u64, u64, u64, u64, u64) -> u64>(f: &mut F) -> bool {count6(f) == 64}
/// Returns `true` if proposition is correct, `false` otherwise.
pub fn prove7<F: FnMut(u64, u64, u64, u64, u64, u64, u64) -> u64>(f: &mut F) -> bool {count7(f) == 128}
/// Returns `true` if proposition is correct, `false` otherwise.
pub fn prove8<F: FnMut(u64, u64, u64, u64, u64, u64, u64, u64) -> u64>(f: &mut F) -> bool {
    count8(f) == 256
}
/// Returns `true` if proposition is correct, `false` otherwise.
pub fn prove9<F: FnMut(u64, u64, u64, u64, u64, u64, u64, u64, u64) -> u64>(f: &mut F) -> bool {
    count9(f) == 512
}
/// Returns `true` if proposition is correct, `false` otherwise.
pub fn prove10<F: FnMut(u64, u64, u64, u64, u64, u64, u64, u64, u64, u64) -> u64>(f: &mut F) -> bool {
    count10(f) == 1024
}
/// Returns `true` if proposition is correct, `false` otherwise.
pub fn proven<F: FnMut(&[u64]) -> u64>(n: usize, f: &mut F) -> bool {
    countn(n, f) == 1 << n
}

/// Returns `T` if `a` is `true`, `F` otherwise.
/// In logical terminology this corresponds to a proposition.
pub fn prop(a: bool) -> u64 {if a {T} else {F}}

/// Ignores argument, always returning `false`.
pub fn false_1(_: u64) -> u64 {0}
/// If input is `true`, returns `false` and vice versa.
pub fn not(a: u64) -> u64 {!a}
/// Returns argument.
pub fn id(a: u64) -> u64 {a}
/// Ignores argument, always returning `true`.
pub fn true_1(_: u64) -> u64 {T}

/// Ignores both arguments, returning `false` for all inputs.
pub fn false_2(_: u64, _: u64) -> u64 {0}
/// Returns `true` if all arguments are `true`.
pub fn and(a: u64, b: u64) -> u64 {a & b}
/// Returns `true` if at least one argument is `true`.
pub fn or(a: u64, b: u64) -> u64 {a | b}
/// Returns `true` if only one argument is `true`.
pub fn xor(a: u64, b: u64) -> u64 {a ^ b}
/// Returns `true` if arguments are equal.
pub fn eq(a: u64, b: u64) -> u64 {!(a ^ b)}
/// First argument implies the second.
pub fn imply(a: u64, b: u64) -> u64 {!a | b}
/// Ignores both arguments, returning `true` for all inputs.
pub fn true_2(_: u64, _: u64) -> u64 {T}

/// Ignores all 3 arguments, returning `false` for all inputs.
pub fn false_3(_: u64, _: u64, _: u64) -> u64 {0}
/// Ignores all 4 arguments, returning `false` for all inputs.
pub fn false_4(_: u64, _: u64, _: u64, _: u64) -> u64 {0}
/// Ignores all 5 arguments, returning `false` for all inputs.
pub fn false_5(_: u64, _: u64, _: u64, _: u64, _: u64) -> u64 {0}
/// Ignores all 6 arguments, returning `false` for all inputs.
pub fn false_6(_: u64, _: u64, _: u64, _: u64, _: u64, _: u64) -> u64 {0}
/// Ignores all 7 arguments, returning `false` for all inputs.
pub fn false_7(_: u64, _: u64, _: u64, _: u64, _: u64, _: u64, _: u64) -> u64 {0}
/// Ignores all 8 arguments, returning `false` for all inputs.
pub fn false_8(_: u64, _: u64, _: u64, _: u64, _: u64, _: u64, _: u64, _: u64) -> u64 {0}
/// Ignores all 9 arguments, returning `false` for all inputs.
pub fn false_9(_: u64, _: u64, _: u64, _: u64, _: u64, _: u64, _: u64, _: u64, _: u64) -> u64 {0}
/// Ignores all 10 arguments, returning `false` for all inputs.
pub fn false_10(
    _: u64, _: u64, _: u64, _: u64, _: u64,
    _: u64, _: u64, _: u64, _: u64, _: u64
) -> u64 {0}

/// Ignores all 3 arguments, returning `true` for all inputs.
pub fn true_3(_: u64, _: u64, _: u64) -> u64 {T}
/// Ignores all 4 arguments, returning `true` for all inputs.
pub fn true_4(_: u64, _: u64, _: u64, _: u64) -> u64 {T}
/// Ignores all 5 arguments, returning `true` for all inputs.
pub fn true_5(_: u64, _: u64, _: u64, _: u64, _: u64) -> u64 {T}
/// Ignores all 6 arguments, returning `true` for all inputs.
pub fn true_6(_: u64, _: u64, _: u64, _: u64, _: u64, _: u64) -> u64 {T}
/// Ignores all 7 arguments, returning `true` for all inputs.
pub fn true_7(_: u64, _: u64, _: u64, _: u64, _: u64, _: u64, _: u64) -> u64 {T}
/// Ignores all 8 arguments, returning `true` for all inputs.
pub fn true_8(_: u64, _: u64, _: u64, _: u64, _: u64, _: u64, _: u64, _: u64) -> u64 {T}
/// Ignores all 9 arguments, returning `true` for all inputs.
pub fn true_9(_: u64, _: u64, _: u64, _: u64, _: u64, _: u64, _: u64, _: u64, _: u64) -> u64 {T}
/// Ignores all 10 arguments, returning `true` for all inputs.
pub fn true_10(
    _: u64, _: u64, _: u64, _: u64, _: u64,
    _: u64, _: u64, _: u64, _: u64, _: u64
) -> u64 {T}

/// And and relation of 3 argument.
pub fn and3(a: u64, b: u64, c: u64) -> u64 {and(and(a, b), c)}
/// An and relation of 4 arguments.
pub fn and4(a: u64, b: u64, c: u64, d: u64) -> u64 {and(and(a, b), and(c, d))}
/// An and relation of 5 arguments.
pub fn and5(a: u64, b: u64, c: u64, d: u64, e: u64) -> u64 {and(and(a, b), and3(c, d, e))}
/// An and relation of 6 arguments.
pub fn and6(a: u64, b: u64, c: u64, d: u64, e: u64, f: u64) -> u64 {
    and(and3(a, b, c), and3(d, e, f))
}
/// An and relation of 7 arguments.
pub fn and7(a: u64, b: u64, c: u64, d: u64, e: u64, f: u64, g: u64) -> u64 {
    and(and4(a, b, c, d), and3(e, f, g))
}
/// An and relation of 8 arguments.
pub fn and8(a: u64, b: u64, c: u64, d: u64, e: u64, f: u64, g: u64, h: u64) -> u64 {
    and(and4(a, b, c, d), and4(e, f, g, h))
}
/// An and relation of 9 arguments.
pub fn and9(a: u64, b: u64, c: u64, d: u64, e: u64, f: u64, g: u64, h: u64, i: u64) -> u64 {
    and(and5(a, b, c, d, e), and4(f, g, h, i))
}
/// An and relation of 10 arguments.
pub fn and10(
    a: u64, b: u64, c: u64, d: u64, e: u64,
    f: u64, g: u64, h: u64, i: u64, j: u64
) -> u64 {
    and(and5(a, b, c, d, e), and5(f, g, h, i, j))
}
/// An and relation of variable number of arguments.
pub fn andn(vs: &[u64]) -> u64 {
    match vs.len() {
        0 => T,
        1 => vs[0],
        2 => and(vs[0], vs[1]),
        3 => and3(vs[0], vs[1], vs[2]),
        4 => and4(vs[0], vs[1], vs[2], vs[3]),
        5 => and5(vs[0], vs[1], vs[2], vs[3], vs[4]),
        6 => and6(vs[0], vs[1], vs[2], vs[3], vs[4], vs[5]),
        7 => and7(vs[0], vs[1], vs[2], vs[3], vs[4], vs[5], vs[6]),
        8 => and8(vs[0], vs[1], vs[2], vs[3], vs[4], vs[5], vs[6], vs[7]),
        9 => and9(vs[0], vs[1], vs[2], vs[3], vs[4], vs[5], vs[6], vs[7], vs[8]),
        10 => and10(vs[0], vs[1], vs[2], vs[3], vs[4], vs[5], vs[6], vs[7], vs[8], vs[9]),
        x => and(andn(&vs[..x]), andn(&vs[x..]))
    }
}

/// An or relation of 3 arguments.
pub fn or3(a: u64, b: u64, c: u64) -> u64 {or(or(a, b), c)}
/// An or relation of 4 arguments.
pub fn or4(a: u64, b: u64, c: u64, d: u64) -> u64 {or(or(a, b), or(c, d))}
/// An or relation of 5 arguments.
pub fn or5(a: u64, b: u64, c: u64, d: u64, e: u64) -> u64 {or(or3(a, b, c), or(d, e))}
/// An or relation of 6 arguments.
pub fn or6(a: u64, b: u64, c: u64, d: u64, e: u64, f: u64) -> u64 {or(or3(a, b, c), or3(d, e, f))}
/// An or relation of 7 arguments.
pub fn or7(a: u64, b: u64, c: u64, d: u64, e: u64, f: u64, g: u64) -> u64 {
    or(or4(a, b, c, d), or3(e, f, g))
}
/// An or relation of 8 arguments.
pub fn or8(a: u64, b: u64, c: u64, d: u64, e: u64, f: u64, g: u64, h: u64) -> u64 {
    or(or4(a, b, c, d), or4(e, f, g, h))
}
/// An or relation of 9 arguments.
pub fn or9(a: u64, b: u64, c: u64, d: u64, e: u64, f: u64, g: u64, h: u64, i: u64) -> u64 {
    or(or5(a, b, c, d, e), or4(f, g, h, i))
}
/// An or relation of 10 arguments.
pub fn or10(
    a: u64, b: u64, c: u64, d: u64, e: u64,
    f: u64, g: u64, h: u64, i: u64, j: u64
) -> u64 {
    or(or5(a, b, c, d, e), or5(f, g, h, i, j))
}
/// An or relation of variable number of arguments.
pub fn orn(vs: &[u64]) -> u64 {
    match vs.len() {
        0 => F,
        1 => vs[0],
        2 => or(vs[0], vs[1]),
        3 => or3(vs[0], vs[1], vs[2]),
        4 => or4(vs[0], vs[1], vs[2], vs[3]),
        5 => or5(vs[0], vs[1], vs[2], vs[3], vs[4]),
        6 => or6(vs[0], vs[1], vs[2], vs[3], vs[4], vs[5]),
        7 => or7(vs[0], vs[1], vs[2], vs[3], vs[4], vs[5], vs[6]),
        8 => or8(vs[0], vs[1], vs[2], vs[3], vs[4], vs[5], vs[6], vs[7]),
        9 => or9(vs[0], vs[1], vs[2], vs[3], vs[4], vs[5], vs[6], vs[7], vs[8]),
        10 => or10(vs[0], vs[1], vs[2], vs[3], vs[4], vs[5], vs[6], vs[7], vs[8], vs[9]),
        x => or(orn(&vs[..x]), orn(&vs[x..]))
    }
}

/// An xor relation of 3 arguments.
pub fn xor3(a: u64, b: u64, c: u64) -> u64 {
    or(
        and(xor(a, b), not(c)),
        not(or3(a, b, not(c)))
    )
}
/// An xor relation of 4 arguments.
pub fn xor4(a: u64, b: u64, c: u64, d: u64) -> u64 {
    or(
        and(xor3(a, b, c), not(d)),
        not(or4(a, b, c, not(d)))
    )
}
/// An xor relation of 5 arguments.
pub fn xor5(a: u64, b: u64, c: u64, d: u64, e: u64) -> u64 {
    or(
        and(xor4(a, b, c, d), not(e)),
        not(or5(a, b, c, d, not(e)))
    )
}
/// An xor relation of 6 arguments.
pub fn xor6(a: u64, b: u64, c: u64, d: u64, e: u64, f: u64) -> u64 {
    or(
        and(xor5(a, b, c, d, e), not(f)),
        not(or6(a, b, c, d, e, not(f)))
    )
}
/// An xor relation of 7 arguments.
pub fn xor7(a: u64, b: u64, c: u64, d: u64, e: u64, f: u64, g: u64) -> u64 {
    or(
        and(xor6(a, b, c, d, e, f), not(g)),
        not(or7(a, b, c, d, e, f, not(g)))
    )
}
/// An xor relation of 8 arguments.
pub fn xor8(a: u64, b: u64, c: u64, d: u64, e: u64, f: u64, g: u64, h: u64) -> u64 {
    or(
        and(xor7(a, b, c, d, e, f, g), not(h)),
        not(or8(a, b, c, d, e, f, g, not(h)))
    )
}
/// An xor relation of 9 arguments.
pub fn xor9(a: u64, b: u64, c: u64, d: u64, e: u64, f: u64, g: u64, h: u64, i: u64) -> u64 {
    or(
        and(xor8(a, b, c, d, e, f, g, h), not(i)),
        not(or9(a, b, c, d, e, f, g, h, not(i)))
    )
}
/// An xor relation of 10 arguments.
pub fn xor10(
    a: u64, b: u64, c: u64, d: u64, e: u64,
    f: u64, g: u64, h: u64, i: u64, j: u64
) -> u64 {
    or(
        and(xor9(a, b, c, d, e, f, g, h, i), not(j)),
        not(or10(a, b, c, d, e, f, g, h, i, not(j)))
    )
}
/// An xor relation of variable number of arguments.
pub fn xorn(vs: &[u64]) -> u64 {
    match vs.len() {
        0 => F,
        1 => vs[0],
        2 => xor(vs[0], vs[1]),
        3 => xor3(vs[0], vs[1], vs[2]),
        4 => xor4(vs[0], vs[1], vs[2], vs[3]),
        5 => xor5(vs[0], vs[1], vs[2], vs[3], vs[4]),
        6 => xor6(vs[0], vs[1], vs[2], vs[3], vs[4], vs[5]),
        7 => xor7(vs[0], vs[1], vs[2], vs[3], vs[4], vs[5], vs[6]),
        8 => xor8(vs[0], vs[1], vs[2], vs[3], vs[4], vs[5], vs[6], vs[7]),
        9 => xor9(vs[0], vs[1], vs[2], vs[3], vs[4], vs[5], vs[6], vs[7], vs[8]),
        10 => xor10(vs[0], vs[1], vs[2], vs[3], vs[4], vs[5], vs[6], vs[7], vs[8], vs[9]),
        x => {
            or(
                and(xorn(&vs[..x]), not(vs[x-1])),
                not(or(orn(&vs[..x]), not(vs[x-1])))
            )
        }
    }
}

/// An imply chain of 3 arguments.
pub fn imply3(a: u64, b: u64, c: u64) -> u64 {and(imply(a, b), imply(b, c))}
/// An imply chain of 4 arguments.
pub fn imply4(a: u64, b: u64, c: u64, d: u64) -> u64 {
    and3(imply(a, b), imply(b, c), imply(c, d))
}
/// An imply chain of 5 arguments.
pub fn imply5(a: u64, b: u64, c: u64, d: u64, e: u64) -> u64 {
    and4(imply(a, b), imply(b, c), imply(c, d), imply(d, e))
}
/// An imply chain of 6 arguments.
pub fn imply6(a: u64, b: u64, c: u64, d: u64, e: u64, f: u64) -> u64 {
    and5(imply(a, b), imply(b, c), imply(c, d), imply(d, e), imply(e, f))
}
/// An imply chain of 7 arguments.
pub fn imply7(a: u64, b: u64, c: u64, d: u64, e: u64, f: u64, g: u64) -> u64 {
    and6(imply(a, b), imply(b, c), imply(c, d), imply(d, e), imply(e, f), imply(f, g))
}
/// An imply chain of 8 arguments.
pub fn imply8(a: u64, b: u64, c: u64, d: u64, e: u64, f: u64, g: u64, h: u64) -> u64 {
    and7(imply(a, b), imply(b, c), imply(c, d), imply(d, e), imply(e, f), imply(f, g), imply(g, h))
}
/// An imply chain of 9 arguments.
pub fn imply9(a: u64, b: u64, c: u64, d: u64, e: u64, f: u64, g: u64, h: u64, i: u64) -> u64 {
    and8(imply(a, b), imply(b, c), imply(c, d), imply(d, e),
         imply(e, f), imply(f, g), imply(g, h), imply(h, i))
}
/// An imply chain of 10 arguments.
pub fn imply10(
    a: u64, b: u64, c: u64, d: u64, e: u64,
    f: u64, g: u64, h: u64, i: u64, j: u64,
) -> u64 {
    and9(imply(a, b), imply(b, c), imply(c, d), imply(d, e),
         imply(e, f), imply(f, g), imply(g, h), imply(h, i), imply(i, j))
}
/// An imply chain of variable number of arguments.
pub fn implyn(vs: &[u64]) -> u64 {
    match vs.len() {
        0 => T,
        1 => vs[0],
        2 => imply(vs[0], vs[1]),
        3 => imply3(vs[0], vs[1], vs[2]),
        4 => imply4(vs[0], vs[1], vs[2], vs[3]),
        5 => imply5(vs[0], vs[1], vs[2], vs[3], vs[4]),
        6 => imply6(vs[0], vs[1], vs[2], vs[3], vs[4], vs[5]),
        7 => imply7(vs[0], vs[1], vs[2], vs[3], vs[4], vs[5], vs[6]),
        8 => imply8(vs[0], vs[1], vs[2], vs[3], vs[4], vs[5], vs[6], vs[7]),
        9 => imply9(vs[0], vs[1], vs[2], vs[3], vs[4], vs[5], vs[6], vs[7], vs[8]),
        10 => imply10(vs[0], vs[1], vs[2], vs[3], vs[4], vs[5], vs[6], vs[7], vs[8], vs[9]),
        x => {
            and(implyn(&vs[..x]), imply(vs[x-2], vs[x-1]))
        }
    }
}

/// A boolean function of one argument.
pub type Pred1 = fn(u64) -> u64;
/// A boolean function (transformed) of two arguments.
pub type Pred2 = fn(u64, u64) -> u64;

/// Implemented by types to use with `all` and `any`.
pub trait Enumerable: Sized {
    /// Returns start value.
    fn start() -> Self;
    /// Increases value.
    fn inc(&self) -> Option<Self>;
}

impl Enumerable for Pred1 {
    fn start() -> Self {false_1}
    fn inc(&self) -> Option<Self> {
        match *self {
            x if x == false_1 => Some(not),
            x if x == not => Some(id),
            x if x == id => Some(true_1),
            x if x == true_1 => None,
            _ => panic!("Unknown function"),
        }
    }
}

impl Enumerable for u8 {
    fn start() -> u8 {0}
    fn inc(&self) -> Option<Self> {self.checked_add(1)}
}

/// Enumerates the type, checking that at least one output is true.
pub fn any<E: Enumerable + Copy, F: Fn(E) -> u64>(f: &F) -> u64 {
    let mut val = E::start();
    while let Some(new_val) = E::inc(&val) {
        if f(new_val) != F {return T};
        val = new_val;
    }
    F
}

/// Enumerates the type, checking that all outputs are true.
pub fn all<E: Enumerable + Copy, F: Fn(E) -> u64>(f: &F) -> u64 {
    let mut val = E::start();
    while let Some(new_val) = E::inc(&val) {
        if f(new_val) != T {return F};
        val = new_val;
    }
    T
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_2() {
        assert_eq!(count1(&mut false_1), 0);
        assert_eq!(count1(&mut not), 1);
        assert_eq!(count1(&mut id), 1);
        assert_eq!(count1(&mut true_1), 2);

        assert_eq!(count2(&mut false_2), 0);
        assert_eq!(count2(&mut and), 1);
        assert_eq!(count2(&mut xor), 2);
        assert_eq!(count2(&mut eq), 2);
        assert_eq!(count2(&mut or), 3);
        assert_eq!(count2(&mut true_2), 4);
        assert_eq!(count2(&mut imply), 3);
        assert_eq!(count2(&mut |a, b| imply(and(a, b), or(a, b))), 4);

        assert_eq!(count3(&mut |a, b, c| and(or(a, b), and(a, c))), 2);
        assert_eq!(count4(&mut |a, b, c, d| and(or(a, b), or(c, d))), 9);
        assert_eq!(count5(&mut |_, _, _, _, _| T), 32);
        assert_eq!(count6(&mut |_, _, _, _, _, _| T), 64);
        assert_eq!(count7(&mut |_, _, _, _, _, _, _| T), 128);
        assert_eq!(count8(&mut |_, _, _, _, _, _, _, _| T), 256);
        assert_eq!(count9(&mut |_, _, _, _, _, _, _, _, _| T), 512);
        assert_eq!(count10(&mut |_, _, _, _, _, _, _, _, _, _| T), 1024);
    }
}