1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/*
Copyright (c) 2020 Todd Stellanova
LICENSE: BSD3 (see LICENSE file)
*/

#![no_std]

//!
//! An embedded-hal no-std driver for the PMW3901 optical flow sensor.
//!

use embedded_hal as hal;
use hal::digital::v2::OutputPin;
use embedded_hal::blocking::delay::DelayMs;

#[cfg(feature = "rttdebug")]
use panic_rtt_core::rprintln;

/// Errors in this crate
#[derive(Debug)]
pub enum Error<CommE, PinE> {
    /// Sensor communication error
    Comm(CommE),
    /// Pin setting error
    Pin(PinE),

    /// Poor signal quality / insufficient light or texture
    NoSignal,
    /// Unrecognized chip ID
    UnknownChipId,
    /// Sensor not responding
    Unresponsive,
}

pub struct PMW3901<SPI, CSN> {
    /// the SPI port to use when communicating
    spi: SPI,
    /// the Chip Select pin (GPIO output) to use when communicating
    csn: CSN,
}

impl<SPI, CSN, CommE, PinE> PMW3901<SPI, CSN>
    where
        SPI: hal::blocking::spi::Write<u8, Error = CommE>
        + hal::blocking::spi::Transfer<u8, Error = CommE>,
        CSN: OutputPin<Error = PinE>,
{


    pub fn new(spi: SPI, csn: CSN) -> Self {
        let mut inst = Self { spi: spi, csn: csn };
        //ensure that the device is initially deselected
        let _ = inst.csn.set_high();
        inst
    }

    /// Initialize this device
    pub fn init(&mut self, delay_source: &mut impl DelayMs<u32>) -> Result<(), Error<CommE, PinE>> {
        //perform a soft reset
        self.register_write(Register::PowerUpReset as u8, 0x5A)?;
        delay_source.delay_ms(3000);

        // verify chip IDs
        let cid = self.register_read(Register::ProductId)?;
        let inv_cid = self.register_read(Register::InverseProductId)?;

        if !(Self::PRODUCT_ID == cid && Self::INV_PRODUCT_ID == inv_cid) {
            #[cfg(feature = "rttdebug")]
            rprintln!("unknown cid 0x{:x} inv_cid 0x{:x} ", cid, inv_cid);
            return Err(Error::UnknownChipId);
        }

        self.write_config_optimizations()?;
        // send an initial to the sensor: this is allowed to fail (squal == 0)
        let _ = self.get_motion();

        Ok(())
    }

    /// Below this threshold we assume the quality of flow measurement is poor
    const SQUAL_THRESHOLD: u8 = 5;
    const DIR_READ: u8 = 0x7f;
    const MOTION_READ_BLOCK: [u8; 12] = [
        Self::DIR_READ & (Register::Motion as u8), 0,
        Self::DIR_READ & (Register::DeltaXL as u8), 0,
        Self::DIR_READ & (Register::DeltaXH as u8), 0,
        Self::DIR_READ & (Register::DeltaYL as u8), 0,
        Self::DIR_READ & (Register::DeltaYH as u8), 0,
        Self::DIR_READ & (Register::Squal as u8), 0
    ];

    /// Main method for obtaining the (dx, dy) flow
    pub fn get_motion(&mut self) -> Result< (i16, i16), Error<CommE, PinE>> {
        //read the motion block all at once
        let mut block: [u8; 12] = Self::MOTION_READ_BLOCK;
        self.transfer_sequence(&mut block)?;
        #[cfg(feature = "rttdebug")]
        rprintln!("block: {:?}", block);

        let squal = block[11];
        if squal < Self::SQUAL_THRESHOLD {
            return Err(Error::NoSignal);
        }
        let dx = ((block[5] as i16) << 8) | (block[3] as i16);
        let dy = ((block[9] as i16) << 8) | (block[7] as i16);

        Ok((dx, dy))
    }

    /// Read a single register's value
    pub fn register_read(&mut self, reg: Register) -> Result<u8, Error<CommE, PinE>> {
        let mut block: [u8; 2] = [reg as u8, 0];
        self.transfer_sequence(&mut block)?;
        // self.read_block(reg, &mut block)?;
        Ok(block[1])
    }

    /// Write a value to a single register
    pub fn register_write(&mut self, reg: u8, val: u8) -> Result<(), Error<CommE, PinE>> {
        let block: [u8; 2] = [reg, val];
        self.write_block(&block)?;
        Ok(())
    }

    /// transfer a series of bytes to the sensor
    fn transfer_sequence(&mut self,  buffer: &mut [u8]) -> Result<(), Error<CommE, PinE>> {
        self.csn.set_low().map_err(Error::Pin)?;
        let rc = self.spi.transfer(buffer);
        self.csn.set_high().map_err(Error::Pin)?;
        rc.map_err(Error::Comm)?;

        Ok(())
    }

    /// Write a block to the device
    fn write_block(&mut self, block: &[u8]) -> Result<(), Error<CommE, PinE>> {
        #[cfg(feature = "rttdebug")]
        rprintln!("write {:x?} ", block);

        self.csn.set_low().map_err(Error::Pin)?;
        let rc = self.spi.write(block);
        self.csn.set_high().map_err(Error::Pin)?;
        rc.map_err(Error::Comm)?;

        Ok(())
    }

    /// Write a sequence to undocumented registers in order to optimize performance,
    /// as advised by datasheet section 8.2.
    fn write_config_optimizations(&mut self) -> Result<(), Error<CommE, PinE>> {
        self.register_write(0x7F, 0x00)?;
        self.register_write(0x61, 0xAD)?;
        self.register_write(0x7F, 0x03)?;
        self.register_write(0x40, 0x00)?;
        self.register_write(0x7F, 0x05)?;
        self.register_write(0x41, 0xB3)?;
        self.register_write(0x43, 0xF1)?;
        self.register_write(0x45, 0x14)?;
        self.register_write(0x5B, 0x32)?;
        self.register_write(0x5F, 0x34)?;
        self.register_write(0x7B, 0x08)?;
        self.register_write(0x7F, 0x06)?;
        self.register_write(0x44, 0x1B)?;
        self.register_write(0x40, 0xBF)?;
        self.register_write(0x4E, 0x3F)?;

        Ok(())
    }

    /// supported product IDs
    const PRODUCT_ID: u8 = 0x49;
    const INV_PRODUCT_ID: u8  = 0xB6;
}



#[repr(u8)]
#[derive(Copy, Clone, Debug)]
pub enum Register {
    ProductId = 0x00,
    RevisionId = 0x01,
    Motion = 0x02,
    DeltaXL = 0x03,
    DeltaXH = 0x04,
    DeltaYL = 0x05,
    DeltaYH = 0x06,
    Squal = 0x07,
    RawDataSum = 0x08,
    MaximumRawData = 0x09,
    MinimumRawData = 0x0A,
    ShutterLower = 0x0B,
    ShutterUpper = 0x0C,
    Observation = 0x15,
    MotionBurst = 0x16,

    PowerUpReset = 0x3A,
    Shutdown = 0x3B,

    RawDataGrab = 0x58,
    RawDataGrabStatus = 0x59,

    InverseProductId = 0x5F,
}