1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
//! Helper methods for syntax rule optimization.

use meta_rules::{Select, Rule};

/// Creates a unique table from select rule.
///
/// Uses a unique byte rule: A unique byte determines which sub-rule to process.
///
/// Returns a table mapping from next byte to sub-rule index,
/// and an index for which the unique byte rule no longer holds.
///
/// Supports only up to 255 sub-rules, but this is sufficient for most cases.
pub fn unique_table_from_select(select: &Select, refs: &[Rule]) -> ([u8; 256], usize) {
    let mut data: [u8; 256] = [255; 256];
    let mut unique_up_to = 0;
    for (i, r) in select.args.iter().enumerate() {
        if i >= 255 {break};
        if let Some(b) = unique_byte(r, refs) {
            if data[b as usize] == 255 {
                data[b as usize] = i as u8;
                unique_up_to = i + 1;
            } else {break}
        } else {break}
    }
    (data, unique_up_to)
}

/// Finds a unique byte from rule that determines whether
/// the rule will fail if it does not equals the next byte.
pub fn unique_byte(rule: &Rule, refs: &[Rule]) -> Option<u8> {
    match *rule {
        Rule::Whitespace(_) => None,
        Rule::UntilAny(_) => None,
        Rule::UntilAnyOrWhitespace(_) => None,
        Rule::Number(_) => None,
        Rule::Lines(_) => None,
        Rule::Optional(_) => None,
        Rule::FastSelect(_) => None,
        Rule::Not(ref not) => {
            if let Rule::Not(ref r) = not.rule {unique_byte(&r.rule, refs)}
            else {None}
        }
        Rule::Text(_) => Some(0x22),
        Rule::Select(ref sel) => {
            if sel.args.len() == 1 {unique_byte(&sel.args[0], refs)}
            else {None}
        }
        Rule::SeparateBy(ref sep) => {
            if sep.optional {None}
            else {unique_byte(&sep.rule, refs)}
        }
        Rule::Sequence(ref seq) => {
            if seq.args.len() == 0 {None}
            else {unique_byte(&seq.args[0], refs)}
        }
        Rule::Repeat(ref rep) => {
            if rep.optional {None}
            else {unique_byte(&rep.rule, refs)}
        }
        Rule::Node(ref node) => {
            if let Some(index) = node.index {unique_byte(&refs[index], refs)}
            else {None}
        }
        Rule::Tag(ref tag) => {
            if tag.not {None}
            else {
                if let Some(ch) = tag.text.chars().next() {
                    let mut buf = [0; 4];
                    ch.encode_utf8(&mut buf);
                    Some(buf[0])
                } else {None}
            }
        }
    }
}

/// Optimizes syntax rule.
pub fn optimize_rule(rule: &Rule, refs: &[Rule]) -> Rule {
    use meta_rules::*;

    match *rule {
        Rule::Whitespace(_) |
        Rule::Tag(_) |
        Rule::UntilAny(_) |
        Rule::UntilAnyOrWhitespace(_) |
        Rule::Text(_) |
        Rule::Number(_) |
        Rule::Node(_) |
        // FastSelect is already optimized.
        Rule::FastSelect(_) => rule.clone(),
        Rule::Sequence(ref seq) => {
            Rule::Sequence(Sequence {
                args: seq.args.iter().map(|r| optimize_rule(r, refs)).collect(),
                debug_id: seq.debug_id,
            })
        }
        Rule::SeparateBy(ref sep) => {
            Rule::SeparateBy(Box::new(SeparateBy {
                rule: optimize_rule(&sep.rule, refs),
                by: optimize_rule(&sep.by, refs),
                debug_id: sep.debug_id,
                allow_trail: sep.allow_trail,
                optional: sep.optional,
            }))
        }
        Rule::Repeat(ref rep) => {
            Rule::Repeat(Box::new(Repeat {
                rule: optimize_rule(&rep.rule, refs),
                debug_id: rep.debug_id,
                optional: rep.optional,
            }))
        }
        Rule::Lines(ref lines) => {
            Rule::Lines(Box::new(Lines {
                rule: optimize_rule(&lines.rule, refs),
                debug_id: lines.debug_id,
                indent: lines.indent,
            }))
        }
        Rule::Optional(ref opt) => {
            Rule::Optional(Box::new(Optional {
                rule: optimize_rule(&opt.rule, refs),
                debug_id: opt.debug_id,
            }))
        }
        Rule::Not(ref not) => {
            Rule::Not(Box::new(Not {
                rule: optimize_rule(&not.rule, refs),
                debug_id: not.debug_id,
            }))
        }
        Rule::Select(ref sel) => {
            let (table, unique_up_to) = unique_table_from_select(sel, refs);
            if unique_up_to < 2 {
                if sel.args.len() > 2 {
                    // Check if optimization on the tail is successful.
                    let try_opt = Rule::Select(Select {
                        args: sel.args.iter().skip(1).map(|r| optimize_rule(r, refs)).collect(),
                        debug_id: sel.debug_id,
                    });
                    if let Rule::FastSelect(_) = try_opt {
                        // Optimization successful, create select rule.
                        return Rule::Select(Select {
                            args: vec![
                                optimize_rule(&sel.args[0], refs),
                                try_opt,
                            ],
                            debug_id: sel.debug_id,
                        });
                    }
                }
                Rule::Select(Select {
                    args: sel.args.iter().map(|r| optimize_rule(r, refs)).collect(),
                    debug_id: sel.debug_id,
                })
            } else {
                // Replace Select with FastSelect when possible.
                let mut args: Vec<Rule> = sel.args[..unique_up_to].iter()
                    .map(|r| optimize_rule(r, refs)).collect();
                if unique_up_to < sel.args.len() {
                    let select_args = sel.args[unique_up_to..].iter()
                        .map(|r| optimize_rule(r, refs)).collect();
                    args.push(Rule::Select(Select {
                        debug_id: sel.debug_id,
                        args: select_args,
                    }));
                    Rule::FastSelect(Box::new(FastSelect {
                        table,
                        args,
                        tail: true,
                        debug_id: sel.debug_id,
                    }))
                } else {
                    Rule::FastSelect(Box::new(FastSelect {
                        table,
                        args,
                        tail: false,
                        debug_id: sel.debug_id,
                    }))
                }
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use meta_rules::*;
    use std::sync::Arc;

    fn select(args: &[&str]) -> Select {
        Select {
            debug_id: 0,
            args: args.iter().map(|&n|
                Rule::Tag(Tag {
                    debug_id: 0,
                    not: false,
                    inverted: false,
                    property: None,
                    text: Arc::new(n.into())
                })
            ).collect()
        }
    }

    #[test]
    fn test_1() {
        let sel = select(&["John", "Peter"]);
        let (table, unique_up_to) = unique_table_from_select(&sel, &[]);
        for i in 0..256 {
            if table[i] != 255 {
                println!("0x{:x}: {:?}", i, table[i]);
            }
            assert_eq!(table[i], match i {
                0x4a => 0,
                0x50 => 1,
                _ => 255,
            });
        }
        assert_eq!(unique_up_to, 2);
    }

    #[test]
    fn test_2() {
        let sel = select(&["John", "Peter", "Carl", "Johnathan"]);
        let (table, unique_up_to) = unique_table_from_select(&sel, &[]);
        for i in 0..256 {
            if table[i] != 255 {
                println!("0x{:x}: {:?}", i, table[i]);
            }
            assert_eq!(table[i], match i {
                0x43 => 2,
                0x4a => 0,
                0x50 => 1,
                _ => 255,
            });
        }
        assert_eq!(unique_up_to, 3);
    }

    #[test]
    fn test_empty() {
        let sel = select(&[]);
        let (table, unique_up_to) = unique_table_from_select(&sel, &[]);
        for i in 0..256 {assert_eq!(table[i], 255)}
        assert_eq!(unique_up_to, 0);
    }


    #[test]
    fn test_type() {
        use *;

        let rules = r#"
            100 type = {
                "f64":"f64"
                ["[" type:"arr" "]"]
                "thr":"thr_any"
            }
        "#;
        // Parse rules with meta language and convert to rules for parsing text.
        let rules = match syntax_errstr(rules) {
            Err(err) => {
                panic!("{}", err);
            }
            Ok(rules) => rules.optimize()
        };
        let text = r#"[f64]"#;
        let mut data = vec![];
        match parse_errstr(&rules, text, &mut data) {
            Err(err) => {
                panic!("{}", err);
            }
            Ok(()) => {}
        };
    }
}