Struct pidgin::Grammar

source ·
pub struct Grammar {
    pub name: Option<String>,
    /* private fields */
}
Expand description

A compiled collection of rules ready for the building of a pidgin::Matcher or for use in the definition of a new rule.

You do not build new Grammars directly. Rather, the compile or grammar method of a Pidgin produces them for you.

Fields§

§name: Option<String>

Implementations§

Assigns a name to the grammar.

This will have no effect on any uses of the grammar already in rules.

Examples
let mut p = Pidgin::new();
let g = p.grammar(&vec!["foo", "bar", "baz"]);
p.rule("foo", &g);
let mut g = p.grammar(&vec!["foo cat", "foo dog"]);
print!("{}", g);
// TOP := {foo} (?:cat|dog)
// foo := foo|ba[rz]
g.name("Bartholemew");
print!("{}", g);
// Bartholemew := {foo} (?:cat|dog)
//         foo := foo|ba[rz]

Compiles a Matcher based on the Grammar’s rules.

Errors

If the Grammar contains a “foreign rule” with a named capture, an error may be returned.

Sets the required number of repetitions of the grammar in the string matched against to exactly r.

This is chiefly useful in conjunction with Pidgin::build_rule.

Examples
let mut p = Pidgin::new();
let g = p.grammar(&vec!["foo", "bar", "baz"]);
p.build_rule("foo", vec![sf("xyzzy "), gf(g.reps(3)), sf(" plugh")]);
let g = p.grammar(&vec!["foo"]);
let m = g.matcher()?;
assert!(m.is_match("xyzzy foobarbaz plugh"));
assert!(!m.is_match("xyzzy foo plugh"));
assert!(!m.is_match("xyzzy foobarbazfoo plugh"));

Sets the minimum required number of repetitions of the grammar in the string matched against to r. If no maximum is set, this will be equivalent to the regex repetition suffix {r,} – there will be no upper limit.

If you set the lower limit to 0 and set no upper limit, this will be equivalent to the regex repetition suffix *. Likewise, 1 and no upper limit will be equivalent to +.

This is chiefly useful in conjunction with Pidgin::build_rule.

Examples
let mut p = Pidgin::new();
let g = p.grammar(&vec!["foo", "bar", "baz"]);
p.build_rule("foo", vec![sf("xyzzy "), gf(g.reps_min(3)?), sf(" plugh")]);
let m = p.matcher()?;
assert!(m.is_match("xyzzy foobarbaz plugh"));
assert!(m.is_match("xyzzy foobarbazfoo plugh"));
assert!(!m.is_match("xyzzy foobar plugh"));
Errors

If an upper limit has been set and it is lower than the minimum, an error will be returned

Sets the maximum number of repetitions of the grammar in the string matched against to r. If no minimum is set, this will be equivalent to the regex repetition suffix {0,r} – there will be no lower limit.

This is chiefly useful in conjunction with Pidgin::build_rule.

Examples
let mut p = Pidgin::new();
let g = p.grammar(&vec!["foo", "bar", "baz"]);
p.build_rule("foo", vec![sf("xyzzy "), gf(g.reps_max(3)?), sf(" plugh")]);
let m = p.matcher()?;
assert!(m.is_match("xyzzy foobarbaz plugh"));
assert!(m.is_match("xyzzy foobar plugh"));
assert!(!m.is_match("xyzzy foobarbazfoo plugh"));
Errors

If an lower limit has been set and it is higher than the maximum, an error will be returned. Also, if the maximum is set to 0 an error will be returned.

Sets whether the grammar’s repetition suffix, if any, has the ? modifier. This has no effect on repetition suffixes created during the ingestion of phrases.

Examples
let mut p = Pidgin::new();
let g = p.grammar(&vec!["foo"]);
p.build_rule("foo", vec![gf(g.reps_min(1)?.stingy(true))]);
let g = p.add_str("foo").compile();
let m = g.matcher()?;
let t = m.parse("foofoo").unwrap();
assert_eq!(t.as_str(), "foo");

Sets the minimum number of repetitions of the grammar in the string matched against to min and the maximum to max. If no minimum is set, this will be equivalent to the regex repetition suffix {min,max}.

This is chiefly useful in conjunction with Pidgin::build_rule.

Examples
let mut p = Pidgin::new();
let g = p.grammar(&vec!["foo", "bar", "baz"]);
p.build_rule("foo", vec![sf("xyzzy "), gf(g.reps_min_max(1, 3)?), sf(" plugh")]);
let m = p.matcher()?;
assert!(m.is_match("xyzzy foo plugh"));
assert!(m.is_match("xyzzy foobar plugh"));
assert!(m.is_match("xyzzy foobarbaz plugh"));
assert!(!m.is_match("xyzzy  plugh"));
assert!(!m.is_match("xyzzy foobarbazfoo plugh"));
Errors

If the minimum is greater than the maximum or the maximum is 0, an errors will be returned.

Return a copy of one of the rules used by the grammar.

This is chiefly useful when combining grammars generated by the macro.

Examples
#[macro_use] extern crate pidgin;
let library = grammar!{
    books => <cat> | <dog> | <camel>
    cat   => [&vec!["persian", "siamese", "calico", "tabby"]]
    dog   => [&vec!["dachshund", "chihuahua", "corgi", "malamute"]]
    camel => [&vec!["bactrian", "dromedary"]]
};
let g = grammar!{
    seen -> ("I saw a") g(library.rule("cat").unwrap()) (".")
};
let matcher = g.matcher().unwrap();
assert!(matcher.is_match("I saw a calico."));

Produces a quasi-BNF representation of the grammar.

This is how pidging::Grammar implements std::fmt::Display, so a grammar’s description is what you get if you feed it to the {} pattern.

Examples
let mut p = Pidgin::new();
let g = p.grammar(&vec!["bar", "baz"]);
p.rule("foo", &g);
p = p.case_insensitive(true);
let g = p.grammar(&vec!["ping", "pang", "pong"]);
p = p.case_insensitive(false);
p.rule("xyzzy", &g);
let g = p.grammar(&vec!["xyzzy", "qux"]);
p.rule("plugh", &g);
let g = p.grammar(&vec!["foo", "plugh"]);
println!("{}", g.describe());
//   TOP :=      {foo}|{plugh}
//   foo :=      ba[rz]
// plugh :=      qux|{xyzzy}
// xyzzy := (?i) p[aio]ng
println!("{}", g);
//   TOP :=      {foo}|{plugh}
//   foo :=      ba[rz]
// plugh :=      qux|{xyzzy}
// xyzzy := (?i) p[aio]ng

Generates a non-capturing regex matching what the grammar matches.

Examples
let g = grammar!{
    foo -> r(r"\A") <bar> r(r"\z")
    bar => (?i) [&vec!["cat", "camel", "corn"]]
};
let rx = g.rx()?.to_string();
assert_eq!(r"\A(?i:\s*c(?:orn|a(?:t|mel)))\s*\z", rx);
let g = grammar!{
    sentence    -> <capitalized_word> <other_words>? <terminal_punctuation>
    other_words -> <other_word>+
    other_word  -> <non_terminal_punctuation>? <word>
    capitalized_word         => r(r"\b[A-Z]\w*\b")
    word                     => r(r"\b\w+\b")
    terminal_punctuation     => r(r"[.?!]")
    non_terminal_punctuation => r("(?:--?|[,;'\"])")
};
let rx = g.rule("word").unwrap().rx().unwrap();
let p = g
    .matcher()?
    .parse("John, don't forget to pick up chips.")
    .unwrap();
let other_words = p.name("other_words").unwrap().as_str();
let other_words = rx
    .find_iter(other_words)
    .map(|m| m.as_str())
    .collect::<Vec<_>>();
assert_eq!(
    vec!["don", "t", "forget", "to", "pick", "up", "chips"],
    other_words
);

Returns a quasi-regex representation of the grammar. This is intended mostly for debugging. Rules will be identifiable by named groups, but group names may repeat, in which case the stringification cannot be compiled into a regular expression.

Trait Implementations§

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
Formats the value using the given formatter. Read more
This method returns an Ordering between self and other. Read more
Compares and returns the maximum of two values. Read more
Compares and returns the minimum of two values. Read more
Restrict a value to a certain interval. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
Converts the given value to a String. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.