1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
//
// Copyright (c) DUSK NETWORK. All rights reserved.

use core::convert::{TryFrom, TryInto};

use crate::{Error, Ownable, PublicKey, SecretKey, StealthAddress, ViewKey};
use dusk_bls12_381::BlsScalar;
use dusk_bytes::{DeserializableSlice, Error as BytesError, Serializable};
use dusk_jubjub::{
    dhke, JubJubAffine, JubJubExtended, JubJubScalar, GENERATOR_EXTENDED,
    GENERATOR_NUMS_EXTENDED,
};

use crate::encryption::{decrypt, encrypt, ENCRYPTION_EXTRA_SIZE};

use dusk_poseidon::sponge::hash;
use ff::Field;
use rand_core::{CryptoRng, RngCore};

#[cfg(feature = "rkyv-impl")]
use rkyv::{Archive, Deserialize, Serialize};

/// Blinder used for transparent
pub(crate) const TRANSPARENT_BLINDER: JubJubScalar = JubJubScalar::zero();

/// Size of the Phoenix notes plaintext: value (8 bytes) + blinder (32 bytes)
pub(crate) const PLAINTEXT_SIZE: usize = 40;

/// Size of the Phoenix notes encryption
pub(crate) const ENCRYPTION_SIZE: usize =
    PLAINTEXT_SIZE + ENCRYPTION_EXTRA_SIZE;

/// The types of a Note
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
#[cfg_attr(
    feature = "rkyv-impl",
    derive(Archive, Serialize, Deserialize),
    archive_attr(derive(bytecheck::CheckBytes))
)]
pub enum NoteType {
    /// Defines a Transparent type of Note
    Transparent = 0,
    /// Defines an Obfuscated type of Note
    Obfuscated = 1,
}

impl TryFrom<u8> for NoteType {
    type Error = Error;

    fn try_from(note_type: u8) -> Result<Self, Self::Error> {
        match note_type {
            0 => Ok(NoteType::Transparent),
            1 => Ok(NoteType::Obfuscated),
            n => Err(Error::InvalidNoteType(n)),
        }
    }
}

impl TryFrom<i32> for NoteType {
    type Error = Error;

    fn try_from(note_type: i32) -> Result<Self, Self::Error> {
        (note_type as u8).try_into()
    }
}

/// A note that does not encrypt its value
#[derive(Clone, Debug)]
#[cfg_attr(
    feature = "rkyv-impl",
    derive(Archive, Serialize, Deserialize),
    archive_attr(derive(bytecheck::CheckBytes))
)]
pub struct Note {
    pub(crate) note_type: NoteType,
    pub(crate) value_commitment: JubJubExtended,
    pub(crate) stealth_address: StealthAddress,
    pub(crate) pos: u64,
    pub(crate) encryption: [u8; ENCRYPTION_SIZE],
}

impl PartialEq for Note {
    fn eq(&self, other: &Self) -> bool {
        self.hash() == other.hash()
    }
}

impl Eq for Note {}

impl Note {
    /// Creates a new phoenix output note
    pub fn new<R: RngCore + CryptoRng>(
        rng: &mut R,
        note_type: NoteType,
        pk: &PublicKey,
        value: u64,
        blinding_factor: JubJubScalar,
    ) -> Self {
        let r = JubJubScalar::random(&mut *rng);
        let stealth_address = pk.gen_stealth_address(&r);

        let value_commitment = JubJubScalar::from(value);
        let value_commitment = (GENERATOR_EXTENDED * value_commitment)
            + (GENERATOR_NUMS_EXTENDED * blinding_factor);

        // Output notes have undefined position, equals to u64's MAX value
        let pos = u64::MAX;

        let encryption = match note_type {
            NoteType::Transparent => {
                let mut encryption = [0u8; ENCRYPTION_SIZE];
                encryption[..u64::SIZE].copy_from_slice(&value.to_bytes());

                encryption
            }
            NoteType::Obfuscated => {
                let shared_secret = dhke(&r, pk.A());
                let blinding_factor = BlsScalar::from(blinding_factor);

                let mut plaintext = value.to_bytes().to_vec();
                plaintext.append(&mut blinding_factor.to_bytes().to_vec());

                encrypt(&shared_secret, &plaintext, rng)
                    .expect("Encrypted correctly.")
            }
        };

        Note {
            note_type,
            value_commitment,
            stealth_address,
            pos,
            encryption,
        }
    }

    /// Creates a new transparent note
    ///
    /// The blinding factor will be constant zero since the value commitment
    /// exists only to shield the value. The value is not hidden for transparent
    /// notes, so this can be trivially treated as a constant.
    pub fn transparent<R: RngCore + CryptoRng>(
        rng: &mut R,
        pk: &PublicKey,
        value: u64,
    ) -> Self {
        Self::new(rng, NoteType::Transparent, pk, value, TRANSPARENT_BLINDER)
    }

    /// Creates a new transparent note
    ///
    /// This is equivalent to [`transparent`] but taking only a stealth address,
    /// and a value. This is done to be able to generate a note
    /// directly for a stealth address, as opposed to a public key.
    pub fn transparent_stealth(
        stealth_address: StealthAddress,
        value: u64,
    ) -> Self {
        let value_commitment = JubJubScalar::from(value);
        let value_commitment = (GENERATOR_EXTENDED * value_commitment)
            + (GENERATOR_NUMS_EXTENDED * TRANSPARENT_BLINDER);

        let pos = u64::MAX;

        let mut encryption = [0u8; ENCRYPTION_SIZE];
        encryption[..u64::SIZE].copy_from_slice(&value.to_bytes());

        Note {
            note_type: NoteType::Transparent,
            value_commitment,
            stealth_address,
            pos,
            encryption,
        }
    }

    /// Creates a new obfuscated note
    ///
    /// The provided blinding factor will be used to calculate the value
    /// commitment of the note. The tuple (value, blinding_factor), known by
    /// the caller of this function, must be later used to prove the
    /// knowledge of the value commitment of this note.
    pub fn obfuscated<R: RngCore + CryptoRng>(
        rng: &mut R,
        pk: &PublicKey,
        value: u64,
        blinding_factor: JubJubScalar,
    ) -> Self {
        Self::new(rng, NoteType::Obfuscated, pk, value, blinding_factor)
    }

    fn decrypt_data(
        &self,
        vk: &ViewKey,
    ) -> Result<(u64, JubJubScalar), BytesError> {
        let R = self.stealth_address.R();
        let shared_secret = dhke(vk.a(), R);

        let dec_plaintext: [u8; PLAINTEXT_SIZE] =
            decrypt(&shared_secret, &self.encryption)?;

        let value = u64::from_slice(&dec_plaintext[..u64::SIZE])?;

        // Converts the BLS Scalar into a JubJub Scalar.
        // If the `vk` is wrong it might fails since the resulting BLS Scalar
        // might not fit into a JubJub Scalar.
        let blinding_factor =
            match JubJubScalar::from_slice(&dec_plaintext[u64::SIZE..])?.into()
            {
                Some(scalar) => scalar,
                None => return Err(BytesError::InvalidData),
            };

        Ok((value, blinding_factor))
    }

    /// Create a unique nullifier for the note
    ///
    /// This nullifier is represeted as `H(note_sk · G', pos)`
    pub fn gen_nullifier(&self, sk: &SecretKey) -> BlsScalar {
        let note_sk = sk.gen_note_sk(self.stealth_address);
        let pk_prime = GENERATOR_NUMS_EXTENDED * note_sk.as_ref();
        let pk_prime = pk_prime.to_hash_inputs();

        let pos = BlsScalar::from(self.pos);

        hash(&[pk_prime[0], pk_prime[1], pos])
    }

    /// Return the internal representation of scalars to be hashed
    pub fn hash_inputs(&self) -> [BlsScalar; 6] {
        let value_commitment = self.value_commitment().to_hash_inputs();
        let note_pk =
            self.stealth_address().note_pk().as_ref().to_hash_inputs();

        [
            BlsScalar::from(self.note_type as u64),
            value_commitment[0],
            value_commitment[1],
            note_pk[0],
            note_pk[1],
            BlsScalar::from(self.pos),
        ]
    }

    /// Return a hash represented by `H(note_type, value_commitment,
    /// H(StealthAddress), pos, encrypted_data)
    pub fn hash(&self) -> BlsScalar {
        hash(&self.hash_inputs())
    }

    /// Return the type of the note
    pub const fn note(&self) -> NoteType {
        self.note_type
    }

    /// Return the position of the note on the tree.
    pub const fn pos(&self) -> &u64 {
        &self.pos
    }

    /// Set the position of the note on the tree.
    /// This, naturally, won't reflect immediatelly on the data storage
    pub fn set_pos(&mut self, pos: u64) {
        self.pos = pos;
    }

    /// Return the value commitment `H(value, blinding_factor)`
    pub const fn value_commitment(&self) -> &JubJubExtended {
        &self.value_commitment
    }

    /// Returns the cipher of the encrypted data
    pub const fn encryption(&self) -> &[u8; ENCRYPTION_SIZE] {
        &self.encryption
    }

    /// Attempt to decrypt the note value provided a [`ViewKey`]. Always
    /// succeeds for transparent notes, might fails or return random values for
    /// obfuscated notes if the provided view key is wrong.
    pub fn value(&self, vk: Option<&ViewKey>) -> Result<u64, Error> {
        match (self.note_type, vk) {
            (NoteType::Transparent, _) => {
                let value =
                    u64::from_slice(&self.encryption[..u64::SIZE]).unwrap();
                Ok(value)
            }
            (NoteType::Obfuscated, Some(vk)) => self
                .decrypt_data(vk)
                .map(|(value, _)| value)
                .map_err(|_| Error::InvalidCipher),
            _ => Err(Error::MissingViewKey),
        }
    }

    /// Decrypt the blinding factor with the provided [`ViewKey`]
    ///
    /// If the decrypt fails, a random value is returned
    pub fn blinding_factor(
        &self,
        vk: Option<&ViewKey>,
    ) -> Result<JubJubScalar, Error> {
        match (self.note_type, vk) {
            (NoteType::Transparent, _) => Ok(TRANSPARENT_BLINDER),
            (NoteType::Obfuscated, Some(vk)) => self
                .decrypt_data(vk)
                .map(|(_, blinding_factor)| blinding_factor)
                .map_err(|_| Error::InvalidCipher),
            _ => Err(Error::MissingViewKey),
        }
    }
}

impl Ownable for Note {
    fn stealth_address(&self) -> &StealthAddress {
        &self.stealth_address
    }
}

// Serialize into 105 + ENCRYPTION_SIZE bytes, where 105 is the size of all the
// note elements without the encryption. ENCRYPTION_SIZE = PLAINTEXT_SIZE +
// ENCRYPTION_EXTRA_SIZE
impl Serializable<{ 105 + ENCRYPTION_SIZE }> for Note {
    type Error = BytesError;

    /// Converts a Note into a byte representation
    fn to_bytes(&self) -> [u8; Self::SIZE] {
        let mut buf = [0u8; Self::SIZE];

        buf[0] = self.note_type as u8;

        buf[1..33].copy_from_slice(
            &JubJubAffine::from(&self.value_commitment).to_bytes(),
        );
        buf[33..97].copy_from_slice(&self.stealth_address.to_bytes());
        buf[97..105].copy_from_slice(&self.pos.to_le_bytes());
        buf[105..].copy_from_slice(&self.encryption);
        buf
    }

    /// Attempts to convert a byte representation of a note into a `Note`,
    /// failing if the input is invalid
    fn from_bytes(bytes: &[u8; Self::SIZE]) -> Result<Self, Self::Error> {
        let mut one_u64 = [0u8; 8];

        let note_type =
            bytes[0].try_into().map_err(|_| BytesError::InvalidData)?;
        let value_commitment =
            JubJubExtended::from(JubJubAffine::from_slice(&bytes[1..33])?);
        let stealth_address = StealthAddress::from_slice(&bytes[33..97])?;

        one_u64.copy_from_slice(&bytes[97..105]);
        let pos = u64::from_le_bytes(one_u64);

        let mut encryption = [0u8; ENCRYPTION_SIZE];
        encryption.copy_from_slice(&bytes[105..]);

        Ok(Note {
            note_type,
            value_commitment,
            stealth_address,
            pos,
            encryption,
        })
    }
}