1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
//! A module for the [`PetitSet`] data structure

use crate::PetitMap;
use crate::{map::SuccesfulMapInsertion, CapacityError};

/// A set-like data structure with a fixed maximum size
///
/// This data structure does not require the [`Hash`] or [`Ord`] traits,
/// and instead uses linear iteration to find entries.
/// Iteration order is guaranteed to be stable, and elements are not re-compressed upon removal.
///
/// Under the hood, this is a [`PetitMap<T, (), CAP>`].
///
/// Principally, this data structure should be used for relatively small sets,
/// where iteration performance, stable-order, stack-allocation and uniqueness
/// are more important than insertion or look-up speed.
/// Iteration, insertion and checking whether an element is in the set are O(CAP).
/// Indexing into a particular element is O(1), as is removing an element at a specific index.
///
/// The values are stored as [`Option`]s within an array,
/// so niche optimization can significantly reduce memory footprint.
///
/// The maximum size of this type is given by the const-generic type parameter `CAP`.
/// Entries in this structure are guaranteed to be unique.
#[derive(Debug, Clone, Hash)]
pub struct PetitSet<T, const CAP: usize> {
    pub(crate) map: PetitMap<T, (), CAP>,
}

impl<T, const CAP: usize> Default for PetitSet<T, CAP> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T, const CAP: usize> PetitSet<T, CAP> {
    /// Create a new empty [`PetitSet`].
    ///
    /// The capacity is given by the generic parameter `CAP`.
    pub fn new() -> Self {
        Self {
            map: PetitMap::new(),
        }
    }

    /// Returns the index of the next filled slot, if any
    ///
    /// Returns None if the cursor is larger than CAP
    pub fn next_filled_index(&self, cursor: usize) -> Option<usize> {
        self.map.next_filled_index(cursor)
    }

    /// Returns the index of the next empty slot, if any
    ///
    /// Returns None if the cursor is larger than CAP
    pub fn next_empty_index(&self, cursor: usize) -> Option<usize> {
        self.map.next_empty_index(cursor)
    }

    /// Return the capacity of the [`PetitSet`]
    pub const fn capacity(&self) -> usize {
        CAP
    }

    /// Returns the current number of elements in the [`PetitSet`]
    pub fn len(&self) -> usize {
        self.map.len()
    }

    /// Are there exactly 0 elements in the [`PetitSet`]?
    pub fn is_empty(&self) -> bool {
        self.map.is_empty()
    }

    /// Are there exactly CAP elements in the [`PetitSet`]?
    pub fn is_full(&self) -> bool {
        self.map.is_full()
    }

    /// Returns an iterator over the elements of the [`PetitSet`]
    pub fn iter(&self) -> impl Iterator<Item = &T> {
        self.map.iter().map(|(k, _v)| k)
    }

    /// Returns a reference to the provided index of the underlying array
    ///
    /// Returns `Some(&T)` if the index is in-bounds and has an element
    pub fn get_at(&self, index: usize) -> Option<&T> {
        self.map.get_at(index).map(|(k, _v)| k)
    }

    /// Returns a mutable reference to the provided index of the underlying array
    ///
    /// Returns `Some(&mut T)` if the index is in-bounds and has an element
    pub fn get_at_mut(&mut self, index: usize) -> Option<&mut T> {
        self.map.get_at_mut(index).map(|(k, _v)| k)
    }

    /// Removes all elements from the set without allocation
    pub fn clear(&mut self) {
        self.map.clear()
    }

    /// Removes the element at the provided index
    ///
    /// Returns true if an element was found
    ///
    /// # Panics
    /// Panics if the provided index is larger than CAP.
    pub fn remove_at(&mut self, index: usize) -> bool {
        self.take_at(index).is_some()
    }

    /// Removes the element at the provided index
    ///
    /// Returns `Some(T)` if an element was found at that index, or `None` if no element was there.
    ///
    /// # Panics
    /// Panics if the provided index is larger than CAP.
    #[must_use = "Use remove_at if the value is not needed."]
    pub fn take_at(&mut self, index: usize) -> Option<T> {
        self.map.take_at(index).map(|(k, _v)| k)
    }

    /// Swaps the element in `index_a` with the element in `index_b`
    ///
    /// # Panics
    ///
    /// Panics if either index is greater than CAP.
    pub fn swap_at(&mut self, index_a: usize, index_b: usize) {
        self.map.swap_at(index_a, index_b);
    }

    /// Inserts an element into the next empty index of the set,
    /// without checking for uniqueness
    ///
    /// Returns Some(index) if the operation succeeded, or None if it failed.
    ///
    /// # Warning
    /// This API is very easy to misuse and will completely break your `PetitSet` if you do.
    /// Avoid it unless you are guaranteed by construction that no duplicates exist.
    pub fn insert_unchecked(&mut self, element: T) -> Option<usize> {
        self.map.insert_unchecked(element, ())
    }
}

impl<T: Eq, const CAP: usize> Extend<T> for PetitSet<T, CAP> {
    /// Inserts multiple new elements to the set. Duplicate elements are discarded.
    ///
    /// # Panics
    /// Panics if the set would overflow due to the insertion of non-duplicate items
    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
        for element in iter {
            self.insert(element);
        }
    }
}

impl<T: Eq, const CAP: usize> PetitSet<T, CAP> {
    /// Returns the index for the provided element, if it exists in the set
    pub fn find(&self, element: &T) -> Option<usize> {
        self.map.find(element)
    }

    /// Is the provided element in the set?
    #[must_use]
    pub fn contains(&self, element: &T) -> bool {
        self.find(element).is_some()
    }

    /// Attempt to insert a new element to the set in the first available slot.
    ///
    /// Inserts the element if able, then returns the [`Result`] of that operation.
    /// This is either a [`SuccesfulSetInsertion`] or a [`CapacityError`].
    pub fn try_insert(&mut self, element: T) -> Result<SuccesfulSetInsertion, CapacityError<T>> {
        match self.map.try_insert(element, ()) {
            Ok(sucess) => match sucess {
                SuccesfulMapInsertion::NovelKey(index) => {
                    Ok(SuccesfulSetInsertion::NovelElenent(index))
                }
                SuccesfulMapInsertion::ExtantKey(_val, index) => {
                    Ok(SuccesfulSetInsertion::ExtantElement(index))
                }
            },
            Err(CapacityError((key, _value))) => Err(CapacityError(key)),
        }
    }

    /// Insert a new element to the set in the first available slot
    ///
    /// Returns a [`SuccesfulSetInsertion`], which encodes both the index at which the element is stored
    /// and whether the element was already present.
    ///
    /// # Panics
    /// Panics if the set is full and the item is not a duplicate
    pub fn insert(&mut self, element: T) -> SuccesfulSetInsertion {
        self.try_insert(element)
            .expect("Inserting this element would have overflowed the set!")
    }

    /// Insert a new element to the set at the provided index
    ///
    /// If a matching element already existed in the set, it will be moved to the supplied index.
    /// Any element that was previously there will be moved to the matching element's original index.
    ///
    /// Returns `Some(T)` of any element removed by this operation.
    ///
    /// # Panics
    /// Panics if the provided index is larger than CAP.
    pub fn insert_at(&mut self, element: T, index: usize) -> Option<T> {
        self.map.insert_at(element, (), index).map(|(k, _v)| k)
    }

    /// Inserts multiple new elements to the set. Duplicate elements are discarded.
    ///
    /// Returns a `CapacityError` if the extension cannot be completed because the set is full.
    pub fn try_extend(
        &mut self,
        elements: impl IntoIterator<Item = T>,
    ) -> Result<(), CapacityError<T>> {
        for element in elements {
            self.try_insert(element)?;
        }
        Ok(())
    }

    /// Removes the element from the set, if it exists
    ///
    /// Returns `Some(index)` if the element was found, or `None` if no matching element is found
    pub fn remove(&mut self, element: &T) -> Option<usize> {
        self.map.remove(element)
    }

    /// Removes an element from the set, if it exists, returning
    /// both the value that compared equal and the index at which
    /// it was stored.
    #[must_use = "Use remove if the value is not needed."]
    pub fn take(&mut self, element: &T) -> Option<(usize, T)> {
        self.map.take(element).map(|(i, v)| (i, v.0))
    }

    /// Swaps the positions of `element_a` with the position of `element_b`
    ///
    /// Returns true if both elements were found and succesfully swapped.
    pub fn swap(&mut self, element_a: &T, element_b: &T) -> bool {
        self.map.swap(element_a, element_b)
    }

    /// Are the two [`PetitSet`]s element-for-element identical, in the same order?
    pub fn identical(&self, other: Self) -> bool {
        self.map.identical(other.map)
    }

    /// Retains only the elements specified by the predicate.
    ///
    /// In other words, remove all elements e such that f(&e) returns false. The elements are visited in order.
    pub fn retain<F>(&mut self, mut f: F)
    where
        F: FnMut(&T) -> bool,
    {
        self.map.retain(|e, ()| f(e));
    }

    /// Constructs a new [`PetitSet`] by consuming values from an iterator.
    ///
    /// The consumed values will be stored in order, with duplicate elements discarded.
    ///
    /// Returns an error if the iterator produces more than `CAP` distinct elements. The
    /// returned error will include both the element that could not be inserted, and
    /// a [`PetitSet`] containing all elements up to that point.
    ///
    /// # Example
    /// ```rust
    /// use petitset::CapacityError;
    /// use petitset::PetitSet;
    ///
    /// let elems = vec![1, 2, 1, 4, 3, 1];
    /// let set = PetitSet::<_, 5>::try_from_iter(elems.iter().copied());
    /// assert_eq!(set, Ok(PetitSet::from_raw_array_unchecked([Some(1), Some(2), Some(4), Some(3), None])));
    ///
    /// let failed = PetitSet::<_, 3>::try_from_iter(elems.iter().copied());
    /// assert_eq!(failed, Err(CapacityError((PetitSet::from_raw_array_unchecked([Some(1), Some(2), Some(4)]), 3))));
    /// ```
    pub fn try_from_iter<I: IntoIterator<Item = T>>(
        element_iter: I,
    ) -> Result<Self, CapacityError<(Self, T)>> {
        let iter_for_map = element_iter.into_iter().map(|e| (e, ()));

        match PetitMap::try_from_iter(iter_for_map) {
            Ok(map) => Ok(PetitSet { map }),
            Err(CapacityError((map, failed_value))) => {
                Err(CapacityError((PetitSet { map }, failed_value.0)))
            }
        }
    }

    /// Construct a [`PetitSet`] directly from an array, without checking for duplicates.
    ///
    /// It is a logic error if any two non-`None` values in the array are equal, as elements are expected to be unique.
    /// If this occurs, the [`PetitSet`] returned may behave unpredictably.
    pub fn from_raw_array_unchecked(values: [Option<T>; CAP]) -> Self {
        // Convert from Option<T> to the required Option<(T, ())>
        let values_for_map = values.map(|v| v.map(|v| (v, ())));

        Self {
            map: PetitMap::from_raw_array_unchecked(values_for_map),
        }
    }
}

impl<T: Eq, const CAP: usize> FromIterator<T> for PetitSet<T, CAP> {
    /// Panics if the iterator contains more than `CAP` distinct elements.
    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
        PetitSet::try_from_iter(iter).unwrap()
    }
}

impl<T: Eq, const CAP: usize> IntoIterator for PetitSet<T, CAP> {
    type Item = T;
    type IntoIter = PetitSetIter<T, CAP>;
    fn into_iter(self) -> Self::IntoIter {
        PetitSetIter {
            set: self,
            cursor: 0,
        }
    }
}

/// An [`Iterator`] struct for [`PetitSet`]
#[derive(Clone, Debug)]
pub struct PetitSetIter<T: Eq, const CAP: usize> {
    pub(crate) set: PetitSet<T, CAP>,
    cursor: usize,
}

impl<T: Eq, const CAP: usize> PetitSetIter<T, CAP> {
    /// Converts this iterator into the underlying [`PetitSet`]
    ///
    /// Simpler and more direct than using `.collect()`
    #[must_use]
    pub fn into_set(self) -> PetitSet<T, CAP> {
        self.set
    }
}

impl<T: Eq, const CAP: usize> Iterator for PetitSetIter<T, CAP> {
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        if let Some(index) = self.set.next_filled_index(self.cursor) {
            self.cursor = index + 1;
            let result = self.set.take_at(index);
            debug_assert!(result.is_some());
            result
        } else {
            self.cursor = CAP;
            None
        }
    }
}

impl<T: Eq, const CAP: usize, const OTHER_CAP: usize> PartialEq<PetitSet<T, OTHER_CAP>>
    for PetitSet<T, CAP>
{
    /// Tests set-equality between the two sets
    ///
    /// This is order and cap size-independent.
    /// Use the `equivalent` method for elementwise-equality.
    ///
    /// Uses an inefficient O(n^2) algorithm due to minimal trait bounds.
    fn eq(&self, other: &PetitSet<T, OTHER_CAP>) -> bool {
        // Two sets cannot be equal if their cardinality differs
        if self.len() != other.len() {
            return false;
        }

        for item in self.iter() {
            let mut match_found = false;
            for other_item in other.iter() {
                // If a match can be found, we do not need to find another match for `item`
                if item == other_item {
                    match_found = true;
                    break;
                }
            }
            // If no match can be found, the sets cannot match
            if !match_found {
                return false;
            }
        }
        // Matches must be found for all items in the set for the them to be equal
        true
    }
}

impl<T: Eq, const CAP: usize> Eq for PetitSet<T, CAP> {}

impl<T: Eq, const CAP: usize> Default for PetitSetIter<T, CAP> {
    fn default() -> Self {
        Self {
            set: PetitSet::default(),
            cursor: 0,
        }
    }
}

/// The `Ok` result of a successful [`PetitSet`] insertion operation
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum SuccesfulSetInsertion {
    /// This is a new element: it is stored at the provided index
    NovelElenent(usize),
    /// This element was already in the set: it is stored at the provided index
    ExtantElement(usize),
}