1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
//! Probabilistic distributions
//!
//! ## Probability Distribution
//!
//! * There are some famous pdf in Peroxide (not checked pdfs will be implemented soon)
//!     * Bernoulli
//!     * Binomial
//!     * Beta
//!     * Dirichlet
//!     * Gamma
//!     * Normal
//!     * Student's t
//!     * Uniform
//! * There are two enums to represent probability distribution
//!     * `OPDist<T>` : One parameter distribution (Bernoulli)
//!     * `TPDist<T>` : Two parameter distribution (Uniform, Normal, Beta, Gamma)
//!         * `T: PartialOrd + SampleUniform + Copy + Into<f64>`
//! * There are some traits for pdf
//!     * `RNG` trait - extract sample & calculate pdf
//!     * `Statistics` trait - already shown above
//!
//! ### `RNG` trait
//!
//! * `RNG` trait is composed of two fields
//!     * `sample`: Extract samples
//!     * `pdf` : Calculate pdf value at specific point
//!     ```rust
//!     extern crate rand;
//!     use rand::distributions::uniform::SampleUniform;
//!
//!     pub trait RNG {
//!         /// Extract samples of distributions
//!         fn sample(&self, n: usize) -> Vec<f64>;
//!
//!         /// Probability Distribution Function
//!         ///
//!         /// # Type
//!         /// `f64 -> f64`
//!         fn pdf<S: PartialOrd + SampleUniform + Copy + Into<f64>>(&self, x: S) -> f64;
//!     }
//!     ```
//!
//! ### Bernoulli Distribution
//!
//! * Definition
//!     $$ \text{Bern}(x | \mu) = \mu^x (1-\mu)^{1-x} $$
//! * Representative value
//!     * Mean: $\mu$
//!     * Var : $\mu(1 - \mu)$
//! * In peroxide, to generate $\text{Bern}(x | \mu)$, use simple traits
//!     1. Generate $U \sim \text{Unif}(0, 1)$
//!     2. If $U \leq \mu$, then $X = 1$ else $X = 0$
//! * Usage is very simple
//!
//!     ```rust
//!     extern crate peroxide;
//!     use peroxide::fuga::*;
//!
//!     fn main() {
//!         let b = Bernoulli(0.1); // Bern(x | 0.1)
//!         b.sample(100).print();  // Generate 100 samples
//!         b.pdf(0).print();       // 0.9
//!         b.mean().print();       // 0.1
//!         b.var().print();        // 0.09 (approximately)
//!         b.sd().print();         // 0.3  (approximately)
//!     }
//!     ```
//!
//! ### Uniform Distribution
//!
//! * Definition
//!     $$\text{Unif}(x | a, b) = \begin{cases} \frac{1}{b - a} & x \in [a,b]\\\ 0 & \text{otherwise} \end{cases}$$
//! * Representative value
//!     * Mean: $\frac{a + b}{2}$
//!     * Var : $\frac{1}{12}(b-a)^2$
//! * To generate uniform random number, Peroxide uses `rand` crate
//! * **Caution**: `Uniform(T, T)` generates `T` type samples (only for `Uniform`)
//!
//!     ```rust
//!     extern crate peroxide;
//!     use peroxide::fuga::*;
//!
//!     fn main() {
//!         // Uniform(start, end)
//!         let a = Uniform(0f64, 1f64); // It will generate `f64` samples.
//!         a.sample(100).print();
//!         a.pdf(0.2).print();
//!         a.mean().print();
//!         a.var().print();
//!         a.sd().print();
//!     }
//!     ```
//!
//! ### Normal Distribution
//!
//! * Definition
//!     $$\mathcal{N}(x | \mu, \sigma^2) = \frac{1}{\sqrt{2\pi \sigma^2}} \exp{\left( - \frac{(x - \mu)^2}{2\sigma^2}\right)}$$
//! * Representative value
//!     * Mean: $\mu$
//!     * Var: $\sigma^2$
//! * To generate normal random number, there are two famous algorithms
//!     * Marsaglia-Polar method
//!     * Ziggurat traits
//! * In peroxide (after ver 0.19.1), use `rand_distr` to generate random normal samples.
//! * <del>In peroxide, main traits is Ziggurat - most efficient traits to generate random normal samples.</del>
//!     * <del>Code is based on a [C implementation](https://www.seehuhn.de/pages/ziggurat.html) by Jochen Voss.</del>
//!     ```rust
//!     extern crate peroxide;
//!     use peroxide::fuga::*;
//!
//!     fn main() {
//!         // Normal(mean, std)
//!         let a = Normal(0, 1); // Standard normal
//!         a.sample(100).print();
//!         a.pdf(0).print(); // Maximum probability
//!         a.mean().print();
//!         a.var().print();
//!         a.sd().print();
//!     }
//!     ```
//!
//! ### Beta Distribution
//!
//! ### Gamma Distribution
//!
//! ### Binomial Distribution
//!

extern crate rand;
extern crate rand_distr;
use self::rand::distributions::uniform::SampleUniform;
use self::rand::prelude::*;
use self::rand_distr::Distribution;
pub use self::OPDist::*;
pub use self::TPDist::*;
use crate::special::function::*;
//use statistics::rand::ziggurat;
use crate::statistics::{ops::C, stat::Statistics};
use std::convert::Into;
use std::f64::consts::E;

/// One parameter distribution
///
/// # Distributions
/// * `Bernoulli(prob)`: Bernoulli distribution
#[derive(Debug, Clone)]
pub enum OPDist<T: PartialOrd + SampleUniform + Copy + Into<f64>> {
    Bernoulli(T),
    StudentT(T),
}

/// Two parameter distribution
///
/// # Distributions
/// * `Uniform(start, end)`: Uniform distribution
/// * `Normal(mean, std)`: Normal distribution
#[derive(Debug, Clone)]
pub enum TPDist<T: PartialOrd + SampleUniform + Copy + Into<f64>> {
    Uniform(T, T),
    Binomial(usize, T),
    Normal(T, T),
    Beta(T, T),
    Gamma(T, T),
}

/// Extract parameter
pub trait ParametricDist {
    type Parameter;
    fn params(&self) -> Self::Parameter;
}

impl<T: PartialOrd + SampleUniform + Copy + Into<f64>> ParametricDist for OPDist<T> {
    type Parameter = f64;

    fn params(&self) -> Self::Parameter {
        match self {
            Bernoulli(mu) => (*mu).into(),
            StudentT(nu) => (*nu).into(),
        }
    }
}

impl<T: PartialOrd + SampleUniform + Copy + Into<f64>> ParametricDist for TPDist<T> {
    type Parameter = (f64, f64);

    fn params(&self) -> Self::Parameter {
        match self {
            Uniform(a, b) => ((*a).into(), (*b).into()),
            Binomial(a, b) => (*a as f64, (*b).into()),
            Normal(mu, sigma) => ((*mu).into(), (*sigma).into()),
            Beta(a, b) => ((*a).into(), (*b).into()),
            Gamma(a, b) => ((*a).into(), (*b).into()),
        }
    }
}

/// Random Number Generator trait
///
/// # Methods
/// * `sample`: extract samples
pub trait RNG {
    /// Extract samples of distributions
    fn sample(&self, n: usize) -> Vec<f64>;

    /// Probability Distribution Function
    ///
    /// # Type
    /// `f64 -> f64`
    fn pdf<S: PartialOrd + SampleUniform + Copy + Into<f64>>(&self, x: S) -> f64;

    /// Cumulative Distribution Function
    ///
    /// # Type
    /// `f64` -> `f64`
    fn cdf<S: PartialOrd + SampleUniform + Copy + Into<f64>>(&self, x: S) -> f64;
}

/// RNG for OPDist
impl<T: PartialOrd + SampleUniform + Copy + Into<f64>> RNG for OPDist<T> {
    fn sample(&self, n: usize) -> Vec<f64> {
        match self {
            Bernoulli(prob) => {
                assert!(
                    (*prob).into() <= 1f64,
                    "Probability should be smaller than 1"
                );

                let mut rng = thread_rng();
                let mut v = vec![0f64; n];

                for i in 0..n {
                    let uniform = rng.gen_range(0f64, 1f64);
                    if uniform <= (*prob).into() {
                        v[i] = 1f64;
                    } else {
                        v[i] = 0f64;
                    }
                }
                v
            }
            StudentT(nu) => {
                let mut rng = thread_rng();
                let stud = rand_distr::StudentT::<f64>::new((*nu).into()).unwrap();
                stud.sample_iter(&mut rng).take(n).collect()
            }
        }
    }

    fn pdf<S: PartialOrd + SampleUniform + Copy + Into<f64>>(&self, x: S) -> f64 {
        match self {
            Bernoulli(prob) => {
                if x.into() == 1f64 {
                    (*prob).into()
                } else {
                    1f64 - (*prob).into()
                }
            }
            StudentT(nu) => {
                let dof = (*nu).into();
                let t = x.into();
                1f64 / (dof.sqrt() * beta(0.5f64, dof / 2f64))
                    * (1f64 + t.powi(2) / dof).powf(-(dof + 1f64) / 2f64)
            }
        }
    }

    fn cdf<S: PartialOrd + SampleUniform + Copy + Into<f64>>(&self, x: S) -> f64 {
        match self {
            Bernoulli(prob) => {
                let k: f64 = x.into();
                if k < 0f64 {
                    0f64
                } else if k < 1f64 {
                    1f64 - (*prob).into()
                } else {
                    1f64
                }
            }
            StudentT(nu) => {
                let x: f64 = x.into();
                let nu: f64 = (*nu).into();
                let _odd_nu = (nu + 1f64) / 2f64;
                let even_nu = nu / 2f64;

                if x > 0f64 {
                    let x_t = nu / (x.powi(2) + nu);
                    1f64 - 0.5 * inc_beta(even_nu, 0.5, x_t)
                } else if x < 0f64 {
                    self.cdf(-x) - 0.5
                } else {
                    0.5
                }
                // 0.5f64 + x * gamma(odd_nu) * hyp2f1(0.5, odd_nu, 1.5, -x.powi(2) / (*nu).into()) / (PI * (*nu).into()).sqrt() * gamma(even_nu)
            }
        }
    }
}

/// RNG for TPDist
impl<T: PartialOrd + SampleUniform + Copy + Into<f64>> RNG for TPDist<T> {
    fn sample(&self, n: usize) -> Vec<f64> {
        match self {
            Uniform(start, end) => {
                let mut rng = thread_rng();
                let mut v = vec![0f64; n];

                for i in 0..n {
                    v[i] = rng.gen_range(*start, *end).into();
                }
                v
            }

            Binomial(num, mu) => {
                let mut rng = thread_rng();
                let binom = rand_distr::Binomial::new(*num as u64, (*mu).into()).unwrap();
                binom
                    .sample_iter(&mut rng)
                    .take(n)
                    .map(|t| t as f64)
                    .collect()
            }

            Normal(m, s) => {
                let mut rng = thread_rng();
                let normal = rand_distr::Normal::<f64>::new((*m).into(), (*s).into()).unwrap();
                normal.sample_iter(&mut rng).take(n).collect()
            }
            //            Normal(m, s) => {
            //                let mut rng = thread_rng();
            //                let mut v = vec![0f64; n];
            //
            //                for i in 0..n {
            //                    v[i] = ziggurat(&mut rng, (*s).into()) + (*m).into();
            //                }
            //                v
            //            }
            Beta(a, b) => {
                let mut rng = thread_rng();
                let beta = rand_distr::Beta::<f64>::new((*a).into(), (*b).into()).unwrap();
                beta.sample_iter(&mut rng).take(n).collect()
            }
            //            Beta(a, b) => {
            //                let mut rng1 = thread_rng();
            //                let mut rng2 = thread_rng();
            //                let mut v = vec![0f64; n];
            //
            //                let a_f64 = (*a).into();
            //                let b_f64 = (*b).into();
            //
            //                // For acceptance-rejection method
            //                let c_x = (a_f64 - 1f64) / (a_f64 + b_f64 - 2f64);
            //                let c = self.pdf(c_x); // Beta(mode(x) | a, b)
            //
            //                let mut iter_num = 0usize;
            //
            //                while iter_num < n {
            //                    let u1 = rng1.gen_range(0f64, 1f64);
            //                    let u2 = rng2.gen_range(0f64, 1f64);
            //
            //                    if u2 <= 1f64 / c * self.pdf(u1) {
            //                        v[iter_num] = u1;
            //                        iter_num += 1;
            //                    }
            //                }
            //                v
            //            }
            Gamma(shape, scale) => {
                let mut rng = thread_rng();
                let gamma =
                    rand_distr::Gamma::<f64>::new((*shape).into(), (*scale).into()).unwrap();
                gamma.sample_iter(&mut rng).take(n).collect()
            } //            Gamma(a, b) => {
              //                let a_f64 = (*a).into();
              //                let b_f64 = (*b).into();
              //
              //                // for Marsaglia & Tsang's Method
              //                let d = a_f64 - 1f64 / 3f64;
              //                let c = 1f64 / (9f64 * d).sqrt();
              //
              //                let mut rng1 = thread_rng();
              //                let mut rng2 = thread_rng();
              //
              //                let mut v = vec![0f64; n];
              //                let mut iter_num = 0usize;
              //
              //                while iter_num < n {
              //                    let u = rng1.gen_range(0f64, 1f64);
              //                    let z = ziggurat(&mut rng2, 1f64);
              //                    let w = (1f64 + c * z).powi(3);
              //
              //                    if z >= -1f64 / c && u.ln() < 0.5 * z.powi(2) + d - d * w + d * w.ln() {
              //                        v[iter_num] = d * w / b_f64;
              //                        iter_num += 1;
              //                    }
              //                }
              //                v
              //            }
        }
    }

    fn pdf<S: PartialOrd + SampleUniform + Copy + Into<f64>>(&self, x: S) -> f64 {
        match self {
            Uniform(a, b) => {
                let val = x.into();
                let a_f64 = (*a).into();
                let b_f64 = (*b).into();
                if val >= a_f64 && val <= b_f64 {
                    let length = b_f64 - a_f64;
                    1f64 / length
                } else {
                    0f64
                }
            }
            Binomial(n, mu) => {
                let n = *n;
                let mu = (*mu).into();
                let m = x.into() as usize;
                (C(n, m) as f64) * mu.powi(m as i32) * (1f64 - mu).powi((n - m) as i32)
            }
            Normal(m, s) => {
                let mean = (*m).into();
                let std = (*s).into();
                gaussian(x.into(), mean, std)
            }
            Beta(a, b) => {
                let a_f64 = (*a).into();
                let b_f64 = (*b).into();
                1f64 / beta(a_f64, b_f64)
                    * x.into().powf(a_f64 - 1f64)
                    * (1f64 - x.into()).powf(b_f64 - 1f64)
            }
            Gamma(a, b) => {
                let a_f64 = (*a).into();
                let b_f64 = (*b).into();
                1f64 / gamma(a_f64)
                    * b_f64.powf(a_f64)
                    * x.into().powf(a_f64 - 1f64)
                    * E.powf(-b_f64 * x.into())
            }
        }
    }

    fn cdf<S: PartialOrd + SampleUniform + Copy + Into<f64>>(&self, x: S) -> f64 {
        let x: f64 = x.into();
        match self {
            Uniform(a, b) => {
                let a: f64 = (*a).into();
                let b: f64 = (*b).into();

                if x < a {
                    0f64
                } else if x <= b {
                    (x - a) / (b - a)
                } else {
                    1f64
                }
            }
            Binomial(n, mu) => {
                let n = *n;
                let p = (*mu).into();
                let q = 1f64 - p;
                let k: f64 = x.into();
                inc_beta(n as f64 - k, k + 1f64, q)
            }
            Normal(m, s) => phi((x - (*m).into()) / (*s).into()),
            Beta(a, b) => {
                let a: f64 = (*a).into();
                let b: f64 = (*b).into();

                inc_beta(a, b, x)
            }
            Gamma(a, b) => {
                let a: f64 = (*a).into();
                let b: f64 = (*b).into();

                inc_gamma(a, b * x)
            }
        }
    }
}

impl<T: PartialOrd + SampleUniform + Copy + Into<f64>> Statistics for OPDist<T> {
    type Array = Vec<f64>;
    type Value = f64;

    fn mean(&self) -> Self::Value {
        match self {
            Bernoulli(mu) => (*mu).into(),
            StudentT(_) => 0f64,
        }
    }

    fn var(&self) -> Self::Value {
        match self {
            Bernoulli(mu) => {
                let mu_f64 = (*mu).into();
                mu_f64 * (1f64 - mu_f64)
            }
            StudentT(nu) => {
                let nu_f64 = (*nu).into();
                nu_f64 / (nu_f64 - 2f64)
            }
        }
    }

    fn sd(&self) -> Self::Value {
        match self {
            Bernoulli(_mu) => self.var().sqrt(),
            StudentT(_nu) => self.var().sqrt(),
        }
    }

    fn cov(&self) -> Self::Array {
        unimplemented!()
    }

    fn cor(&self) -> Self::Array {
        unimplemented!()
    }
}

impl<T: PartialOrd + SampleUniform + Copy + Into<f64>> Statistics for TPDist<T> {
    type Array = Vec<f64>;
    type Value = f64;

    fn mean(&self) -> Self::Value {
        match self {
            Uniform(a, b) => ((*a).into() + (*b).into()) / 2f64,
            Binomial(n, mu) => (*n as f64) * (*mu).into(),
            Normal(m, _s) => (*m).into(),
            Beta(a, b) => (*a).into() / ((*a).into() + (*b).into()),
            Gamma(a, b) => (*a).into() / (*b).into(),
        }
    }

    fn var(&self) -> Self::Value {
        match self {
            Uniform(a, b) => ((*b).into() - (*a).into()).powi(2) / 12f64,
            Binomial(n, mu) => (*n as f64) * (*mu).into() * (1f64 - (*mu).into()),
            Normal(_m, s) => (*s).into().powi(2),
            Beta(a, b) => {
                let a_f64 = (*a).into();
                let b_f64 = (*b).into();
                a_f64 * b_f64 / ((a_f64 + b_f64).powi(2) * (a_f64 + b_f64 + 1f64))
            }
            Gamma(a, b) => (*a).into() / (*b).into().powi(2),
        }
    }

    fn sd(&self) -> Self::Value {
        match self {
            Uniform(_a, _b) => self.var().sqrt(),
            Binomial(_n, _mu) => self.var().sqrt(),
            Normal(_m, s) => (*s).into(),
            Beta(_a, _b) => self.var().sqrt(),
            Gamma(_a, _b) => self.var().sqrt(),
        }
    }

    fn cov(&self) -> Self::Array {
        unimplemented!()
    }

    fn cor(&self) -> Self::Array {
        unimplemented!()
    }
}