1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
use num_traits::Zero;
use std::convert::AsMut;
use std::default::Default;
use std::marker::PhantomData;
use std::mem::size_of;

use byteorder::{ByteOrder, LE};

pub trait ReadByteOrder {
    fn read(src: &[u8]) -> Self;
    fn write(&self, dest: &mut [u8]);
}

impl ReadByteOrder for u8 {
    fn read(src: &[u8]) -> Self {
        src[0]
    }

    fn write(&self, dest: &mut [u8]) {
        dest[0] = *self;
    }
}

impl ReadByteOrder for u16 {
    fn read(src: &[u8]) -> Self {
        LE::read_u16(src)
    }

    fn write(&self, dest: &mut [u8]) {
        LE::write_u16(dest, *self);
    }
}

impl ReadByteOrder for u32 {
    fn read(src: &[u8]) -> Self {
        LE::read_u32(src)
    }

    fn write(&self, dest: &mut [u8]) {
        LE::write_u32(dest, *self);
    }
}

impl ReadByteOrder for u64 {
    fn read(src: &[u8]) -> Self {
        LE::read_u64(src)
    }

    fn write(&self, dest: &mut [u8]) {
        LE::write_u64(dest, *self);
    }
}

impl ReadByteOrder for u128 {
    fn read(src: &[u8]) -> Self {
        let top = u128::from(LE::read_u64(src));
        let bottom = u128::from(LE::read_u64(&src[size_of::<u64>()..]));

        (top << 64) | bottom
    }

    fn write(&self, dest: &mut [u8]) {
        let top = (*self >> 64) as u64;
        let bottom = *self as u64;
        LE::write_u64(dest, top);
        LE::write_u64(&mut dest[size_of::<u64>()..], bottom);
    }
}

#[derive(Clone)]
pub struct PcgSeeder<T> {
    data: Vec<u8>,
    at_pos: usize,
    _type: PhantomData<T>,
}

impl<T> AsMut<[u8]> for PcgSeeder<T> {
    fn as_mut(&mut self) -> &mut [u8] {
        self.data.as_mut()
    }
}

/*
 * The default seeds will control what seeds are used by `new_unseeded` calls.
 * These values were chosen at random.
 */
impl Default for PcgSeeder<u128> {
    fn default() -> Self {
        PcgSeeder::seed_with_stream(
            0xECC1_C32B_E531_D51A_93DC_E189_F916_29F4,
            0xF1CB_2035_E14F_F74B_46EF_3505_C538_6547,
        )
    }
}

impl Default for PcgSeeder<u64> {
    fn default() -> Self {
        PcgSeeder::seed_with_stream(0x1801_3CAD_3A48_3F72, 0x51DB_FCDA_0D6B_21D4)
    }
}

impl Default for PcgSeeder<u32> {
    fn default() -> Self {
        PcgSeeder::seed_with_stream(0x308A_20A0, 0xD133_51F1)
    }
}

impl Default for PcgSeeder<u16> {
    fn default() -> Self {
        PcgSeeder::seed_with_stream(0xAA19, 0x4FD8)
    }
}

impl Default for PcgSeeder<u8> {
    fn default() -> Self {
        PcgSeeder::seed_with_stream(0xE1, 0xB3)
    }
}

impl<T: Sized + ReadByteOrder + Zero> PcgSeeder<T> {
    pub fn seed(seed: T) -> PcgSeeder<T> {
        PcgSeeder::seed_with_stream(seed, T::zero())
    }

    pub fn seed_with_stream(seed: T, stream: T) -> PcgSeeder<T> {
        let mut data = vec![0; size_of::<T>() * 2];
        {
            let (seed_data, stream_data) = data.split_at_mut(size_of::<T>());
            seed.write(seed_data);
            stream.write(stream_data);
        }

        PcgSeeder {
            data,
            at_pos: 0,
            _type: PhantomData,
        }
    }

    pub fn get(&mut self) -> T {
        //For now we panic if there aren't enough bytes
        if size_of::<T>() > (self.data.len() - self.at_pos) {
            panic!("Not enough bytes left in the seed");
        }

        let out = T::read(&self.data[self.at_pos..]);
        self.at_pos += size_of::<T>();
        out
    }
}