1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
// pathfinder/geometry/src/basic/line_segment.rs
//
// Copyright © 2019 The Pathfinder Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Line segment types, optimized with SIMD.

use crate::transform2d::Matrix2x2F;
use crate::vector::{Vector2F, vec2f};
use crate::util;
use pathfinder_simd::default::F32x4;
use std::ops::{Add, Mul, MulAssign, Sub};

#[derive(Clone, Copy, Debug, PartialEq, Default)]
pub struct LineSegment2F(pub F32x4);

impl LineSegment2F {
    #[inline]
    pub fn new(from: Vector2F, to: Vector2F) -> LineSegment2F {
        LineSegment2F(from.0.concat_xy_xy(to.0))
    }

    #[inline]
    pub fn from(self) -> Vector2F {
        Vector2F(self.0.xy())
    }

    #[inline]
    pub fn to(self) -> Vector2F {
        Vector2F(self.0.zw())
    }

    #[inline]
    pub fn set_from(&mut self, point: Vector2F) {
        self.0 = point.0.to_f32x4().concat_xy_zw(self.0)
    }

    #[inline]
    pub fn set_to(&mut self, point: Vector2F) {
        self.0 = self.0.concat_xy_xy(point.0.to_f32x4())
    }

    #[allow(clippy::wrong_self_convention)]
    #[inline]
    pub fn from_x(self) -> f32 {
        self.0[0]
    }

    #[allow(clippy::wrong_self_convention)]
    #[inline]
    pub fn from_y(self) -> f32 {
        self.0[1]
    }

    #[inline]
    pub fn to_x(self) -> f32 {
        self.0[2]
    }

    #[inline]
    pub fn to_y(self) -> f32 {
        self.0[3]
    }

    #[inline]
    pub fn set_from_x(&mut self, x: f32) {
        self.0[0] = x
    }

    #[inline]
    pub fn set_from_y(&mut self, y: f32) {
        self.0[1] = y
    }

    #[inline]
    pub fn set_to_x(&mut self, x: f32) {
        self.0[2] = x
    }

    #[inline]
    pub fn set_to_y(&mut self, y: f32) {
        self.0[3] = y
    }

    #[inline]
    pub fn split(self, t: f32) -> (LineSegment2F, LineSegment2F) {
        debug_assert!(t >= 0.0 && t <= 1.0);
        let (from_from, to_to) = (self.0.xyxy(), self.0.zwzw());
        let d_d = to_to - from_from;
        let mid_mid = from_from + d_d * F32x4::splat(t);
        (
            LineSegment2F(from_from.concat_xy_xy(mid_mid)),
            LineSegment2F(mid_mid.concat_xy_xy(to_to)),
        )
    }

    // Returns the left segment first, followed by the right segment.
    #[inline]
    pub fn split_at_x(self, x: f32) -> (LineSegment2F, LineSegment2F) {
        let (min_part, max_part) = self.split(self.solve_t_for_x(x));
        if min_part.from_x() < max_part.from_x() {
            (min_part, max_part)
        } else {
            (max_part, min_part)
        }
    }

    // Returns the upper segment first, followed by the lower segment.
    #[inline]
    pub fn split_at_y(self, y: f32) -> (LineSegment2F, LineSegment2F) {
        let (min_part, max_part) = self.split(self.solve_t_for_y(y));

        // Make sure we compare `from_y` and `to_y` to properly handle the case in which one of the
        // two segments is zero-length.
        if min_part.from_y() < max_part.to_y() {
            (min_part, max_part)
        } else {
            (max_part, min_part)
        }
    }

    #[inline]
    pub fn solve_t_for_x(self, x: f32) -> f32 {
        (x - self.from_x()) / (self.to_x() - self.from_x())
    }

    #[inline]
    pub fn solve_t_for_y(self, y: f32) -> f32 {
        (y - self.from_y()) / (self.to_y() - self.from_y())
    }

    #[inline]
    pub fn solve_x_for_y(self, y: f32) -> f32 {
        util::lerp(self.from_x(), self.to_x(), self.solve_t_for_y(y))
    }

    #[inline]
    pub fn solve_y_for_x(self, x: f32) -> f32 {
        util::lerp(self.from_y(), self.to_y(), self.solve_t_for_x(x))
    }

    #[inline]
    pub fn reversed(self) -> LineSegment2F {
        LineSegment2F(self.0.zwxy())
    }

    #[inline]
    pub fn upper_point(self) -> Vector2F {
        if self.from_y() < self.to_y() {
            self.from()
        } else {
            self.to()
        }
    }

    #[inline]
    pub fn min_x(self) -> f32 {
        f32::min(self.from_x(), self.to_x())
    }

    #[inline]
    pub fn max_x(self) -> f32 {
        f32::max(self.from_x(), self.to_x())
    }

    #[inline]
    pub fn min_y(self) -> f32 {
        f32::min(self.from_y(), self.to_y())
    }

    #[inline]
    pub fn max_y(self) -> f32 {
        f32::max(self.from_y(), self.to_y())
    }

    #[inline]
    pub fn y_winding(self) -> i32 {
        if self.from_y() < self.to_y() {
            1
        } else {
            -1
        }
    }

    // Reverses if necessary so that the from point is above the to point. Calling this method
    // again will undo the transformation.
    #[inline]
    pub fn orient(self, y_winding: i32) -> LineSegment2F {
        if y_winding >= 0 {
            self
        } else {
            self.reversed()
        }
    }

    // TODO(pcwalton): Optimize with SIMD.
    #[inline]
    pub fn square_length(self) -> f32 {
        let (dx, dy) = (self.to_x() - self.from_x(), self.to_y() - self.from_y());
        dx * dx + dy * dy
    }

    #[inline]
    pub fn vector(self) -> Vector2F {
        self.to() - self.from()
    }

    // http://www.cs.swan.ac.uk/~cssimon/line_intersection.html
    pub fn intersection_t(self, other: LineSegment2F) -> Option<f32> {
        let p0p1 = self.vector();
        let matrix = Matrix2x2F(other.vector().0.concat_xy_xy((-p0p1).0));
        if f32::abs(matrix.det()) < EPSILON {
            return None;
        }
        return Some((matrix.inverse() * (self.from() - other.from())).y());

        const EPSILON: f32 = 0.0001;
    }

    #[inline]
    pub fn sample(self, t: f32) -> Vector2F {
        self.from() + self.vector() * t
    }

    #[inline]
    pub fn midpoint(self) -> Vector2F {
        self.sample(0.5)
    }

    #[inline]
    pub fn offset(self, distance: f32) -> LineSegment2F {
        if self.is_zero_length() {
            self
        } else {
            self + self.vector().yx().normalize() * vec2f(-distance, distance)
        }
    }

    #[inline]
    pub fn is_zero_length(self) -> bool {
        self.vector().is_zero()
    }
}

impl Add<Vector2F> for LineSegment2F {
    type Output = LineSegment2F;
    #[inline]
    fn add(self, point: Vector2F) -> LineSegment2F {
        LineSegment2F(self.0 + point.0.to_f32x4().xyxy())
    }
}

impl Sub<Vector2F> for LineSegment2F {
    type Output = LineSegment2F;
    #[inline]
    fn sub(self, point: Vector2F) -> LineSegment2F {
        LineSegment2F(self.0 - point.0.to_f32x4().xyxy())
    }
}

impl Mul<Vector2F> for LineSegment2F {
    type Output = LineSegment2F;
    #[inline]
    fn mul(self, factors: Vector2F) -> LineSegment2F {
        LineSegment2F(self.0 * factors.0.to_f32x4().xyxy())
    }
}

impl Mul<f32> for LineSegment2F {
    type Output = LineSegment2F;
    #[inline]
    fn mul(self, factor: f32) -> LineSegment2F {
        LineSegment2F(self.0 * F32x4::splat(factor))
    }
}

impl MulAssign<Vector2F> for LineSegment2F {
    #[inline]
    fn mul_assign(&mut self, factors: Vector2F) {
        *self = *self * factors
    }
}

#[derive(Clone, Copy, Debug, Default)]
#[repr(C)]
pub struct LineSegmentU4 {
    pub from: u8,
    pub to: u8,
}

#[derive(Clone, Copy, Debug, Default)]
#[repr(C)]
pub struct LineSegmentU8 {
    pub from_x: u8,
    pub from_y: u8,
    pub to_x: u8,
    pub to_y: u8,
}