1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
//! Utilities useful for various generations tasks.

use crate::math::{Isometry, Point, Real, Vector};
use crate::na::ComplexField;
#[cfg(feature = "dim3")]
use {crate::math::DIM, num::Zero};

/// Applies in-place a transformation to an array of points.
pub fn transform(points: &mut [Point<Real>], m: Isometry<Real>) {
    points.iter_mut().for_each(|p| *p = m * *p);
}

/// Returns the transformed version of a vector of points.
pub fn transformed(mut points: Vec<Point<Real>>, m: Isometry<Real>) -> Vec<Point<Real>> {
    transform(&mut points, m);
    points
}

/// Returns the transformed version of a vector of points.
pub fn scaled(mut points: Vec<Point<Real>>, scale: Vector<Real>) -> Vec<Point<Real>> {
    points
        .iter_mut()
        .for_each(|p| p.coords.component_mul_assign(&scale));
    points
}

// FIXME: remove that in favor of `push_xy_circle` ?
/// Pushes a discretized counterclockwise circle to a buffer.
#[cfg(feature = "dim3")]
#[inline]
pub fn push_circle(radius: Real, nsubdiv: u32, dtheta: Real, y: Real, out: &mut Vec<Point<Real>>) {
    let mut curr_theta = Real::zero();

    for _ in 0..nsubdiv {
        out.push(Point::new(
            ComplexField::cos(curr_theta) * radius,
            y,
            ComplexField::sin(curr_theta) * radius,
        ));
        curr_theta += dtheta;
    }
}

/// Pushes a discretized counterclockwise circle to a buffer.
/// The circle is contained on the plane spanned by the `x` and `y` axis.
#[inline]
#[cfg(feature = "dim2")]
pub fn push_xy_arc(radius: Real, nsubdiv: u32, dtheta: Real, out: &mut Vec<Point<Real>>) {
    let mut curr_theta: Real = 0.0;

    for _ in 0..nsubdiv {
        let mut pt_coords = Vector::zeros();

        pt_coords[0] = ComplexField::cos(curr_theta) * radius;
        pt_coords[1] = ComplexField::sin(curr_theta) * radius;
        out.push(Point::from(pt_coords));

        curr_theta += dtheta;
    }
}

/// Creates the faces from two circles with the same discretization.
#[cfg(feature = "dim3")]
#[inline]
pub fn push_ring_indices(
    base_lower_circle: u32,
    base_upper_circle: u32,
    nsubdiv: u32,
    out: &mut Vec<[u32; DIM]>,
) {
    push_open_ring_indices(base_lower_circle, base_upper_circle, nsubdiv, out);

    // adjust the last two triangles
    push_rectangle_indices(
        base_upper_circle,
        base_upper_circle + nsubdiv - 1,
        base_lower_circle,
        base_lower_circle + nsubdiv - 1,
        out,
    );
}

/// Creates the faces from two circles with the same discretization.
#[cfg(feature = "dim3")]
#[inline]
pub fn push_open_ring_indices(
    base_lower_circle: u32,
    base_upper_circle: u32,
    nsubdiv: u32,
    out: &mut Vec<[u32; DIM]>,
) {
    assert!(nsubdiv > 0);

    for i in 0..nsubdiv - 1 {
        let bli = base_lower_circle + i;
        let bui = base_upper_circle + i;
        push_rectangle_indices(bui + 1, bui, bli + 1, bli, out);
    }
}

/// Creates the faces from a circle and a point that is shared by all triangle.
#[cfg(feature = "dim3")]
#[inline]
pub fn push_degenerate_top_ring_indices(
    base_circle: u32,
    point: u32,
    nsubdiv: u32,
    out: &mut Vec<[u32; DIM]>,
) {
    push_degenerate_open_top_ring_indices(base_circle, point, nsubdiv, out);

    out.push([base_circle + nsubdiv - 1, point, base_circle]);
}

/// Creates the faces from a circle and a point that is shared by all triangle.
#[cfg(feature = "dim3")]
#[inline]
pub fn push_degenerate_open_top_ring_indices(
    base_circle: u32,
    point: u32,
    nsubdiv: u32,
    out: &mut Vec<[u32; DIM]>,
) {
    assert!(nsubdiv > 0);

    for i in 0..nsubdiv - 1 {
        out.push([base_circle + i, point, base_circle + i + 1]);
    }
}

/// Pushes indices so that a circle is filled with triangles. Each triangle will have the
/// `base_circle` point in common.
/// Pushes `nsubdiv - 2` elements to `out`.
#[cfg(feature = "dim3")]
#[inline]
pub fn push_filled_circle_indices(base_circle: u32, nsubdiv: u32, out: &mut Vec<[u32; DIM]>) {
    for i in base_circle + 1..base_circle + nsubdiv - 1 {
        out.push([base_circle, i, i + 1]);
    }
}

/// Given four corner points, pushes to two counterclockwise triangles to `out`.
///
/// # Arguments:
/// * `ul` - the up-left point.
/// * `dl` - the down-left point.
/// * `dr` - the down-right point.
/// * `ur` - the up-right point.
#[cfg(feature = "dim3")]
#[inline]
pub fn push_rectangle_indices(ul: u32, ur: u32, dl: u32, dr: u32, out: &mut Vec<[u32; DIM]>) {
    out.push([ul, dl, dr]);
    out.push([dr, ur, ul]);
}

/// Reverses the clockwising of a set of faces.
#[cfg(feature = "dim3")]
#[inline]
pub fn reverse_clockwising(indices: &mut [[u32; DIM]]) {
    indices.iter_mut().for_each(|idx| idx.swap(0, 1));
}

/// Pushes the index buffer of a closed loop.
#[cfg(feature = "dim3")]
#[inline]
pub fn push_circle_outline_indices(indices: &mut Vec<[u32; 2]>, range: std::ops::Range<u32>) {
    indices.extend((range.start..range.end - 1).map(|i| [i, i + 1]));
    indices.push([range.end - 1, range.start]);
}

/// Pushes the index buffer of an open chain.
#[cfg(feature = "dim3")]
#[inline]
pub fn push_open_circle_outline_indices(indices: &mut Vec<[u32; 2]>, range: std::ops::Range<u32>) {
    indices.extend((range.start..range.end - 1).map(|i| [i, i + 1]));
}

/// Pushes to `out_vtx` a set of points forming an arc starting at `start`, ending at `end` with
/// revolution center at `center`. The curve is approximated by pushing `nsubdivs` points.
/// The `start` and `end` point are not pushed to `out_vtx`.
///
/// ALso pushes to `out_idx` the appropriate index buffer to form the arc (including attaches to
/// the `start` and `end` points).
#[cfg(feature = "dim3")]
pub fn push_arc_and_idx(
    center: Point<Real>,
    start: u32,
    end: u32,
    nsubdivs: u32,
    out_vtx: &mut Vec<Point<Real>>,
    out_idx: &mut Vec<[u32; 2]>,
) {
    let base = out_vtx.len() as u32;
    push_arc(
        center,
        out_vtx[start as usize],
        out_vtx[end as usize],
        nsubdivs,
        out_vtx,
    );
    push_arc_idx(start, base..base + nsubdivs - 1, end, out_idx);
}

/// Pushes to `out` a set of points forming an arc starting at `start`, ending at `end` with
/// revolution center at `center`. The curve is approximated by pushing `nsubdivs` points.
/// The `start` and `end` point are not pushed to `out`.
pub fn push_arc(
    center: Point<Real>,
    start: Point<Real>,
    end: Point<Real>,
    nsubdivs: u32,
    out: &mut Vec<Point<Real>>,
) {
    assert!(nsubdivs > 0);
    if let (Some((start_dir, start_len)), Some((end_dir, end_len))) = (
        na::Unit::try_new_and_get(start - center, 0.0),
        na::Unit::try_new_and_get(end - center, 0.0),
    ) {
        let len_inc = (end_len - start_len) / nsubdivs as Real;

        #[cfg(feature = "dim2")]
        let rot = Some(na::UnitComplex::scaled_rotation_between_axis(
            &start_dir,
            &end_dir,
            1.0 / nsubdivs as Real,
        ));

        #[cfg(feature = "dim3")]
        let rot = na::UnitQuaternion::scaled_rotation_between_axis(
            &start_dir,
            &end_dir,
            1.0 / nsubdivs as Real,
        );

        if let Some(rot) = rot {
            let mut curr_dir = start_dir;
            let mut curr_len = start_len;

            for _ in 0..nsubdivs - 1 {
                curr_dir = rot * curr_dir;
                curr_len += len_inc;

                out.push(center + *curr_dir * curr_len);
            }
        }
    }
}

/// Pushes the index buffer for an arc between `start` and `end` and intermediate points in the
/// range `arc`.
#[cfg(feature = "dim3")]
pub fn push_arc_idx(start: u32, arc: std::ops::Range<u32>, end: u32, out: &mut Vec<[u32; 2]>) {
    if arc.is_empty() {
        out.push([start, end]);
    } else {
        out.push([start, arc.start]);
        for i in arc.start..arc.end - 1 {
            out.push([i, i + 1])
        }
        out.push([arc.end - 1, end])
    }
}

/// Applies a revolution, using the Y symmetry axis passing through the origin.
#[cfg(feature = "dim3")]
pub fn apply_revolution(
    collapse_bottom: bool,
    collapse_top: bool,
    circle_ranges: &[std::ops::Range<u32>],
    nsubdivs: u32,
    out_vtx: &mut Vec<Point<Real>>, // Must be set to the half-profile.
    out_idx: &mut Vec<[u32; 2]>,
) {
    use na::RealField;
    let ang_increment = Real::two_pi() / (nsubdivs as Real);
    let angles = [
        ang_increment * (nsubdivs / 4) as Real,
        ang_increment * (nsubdivs / 2) as Real,
        ang_increment * ((3 * nsubdivs) / 4) as Real,
    ];

    let half_profile_len = out_vtx.len();

    for k in 0..half_profile_len as u32 - 1 {
        out_idx.push([k, k + 1]);
    }

    let mut range = 0..half_profile_len;

    if collapse_bottom {
        range.start += 1;
    }
    if collapse_top {
        range.end -= 1;
    }

    // Push rotated profiles.
    for angle in angles {
        let base = out_vtx.len() as u32;
        let rot = na::UnitQuaternion::new(Vector::y() * angle);

        if collapse_bottom {
            out_idx.push([0, base]);
        }

        for k in range.clone() {
            out_vtx.push(rot * out_vtx[k]);
        }

        for k in 0..range.len() as u32 - 1 {
            out_idx.push([base + k, base + k + 1]);
        }

        if collapse_top {
            out_idx.push([base + range.len() as u32 - 1, half_profile_len as u32 - 1]);
        }
    }

    // Push circles.
    // TODO: right now, this duplicates some points, to simplify the index
    //       buffer construction.
    for circle_range in circle_ranges {
        for i in circle_range.clone() {
            let pt = out_vtx[i as usize];
            let base = out_vtx.len() as u32;
            push_circle(
                pt.coords.xz().norm(),
                nsubdivs,
                ang_increment,
                pt.y,
                out_vtx,
            );
            push_circle_outline_indices(out_idx, base..base + nsubdivs)
        }
    }
}