1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
use num_traits::Float;

use std::f64::consts::PI;
use std::cmp::PartialEq;
use std::ops::{Add, Sub};

use flt;

macro_rules! make_hues {
    ($($(#[$doc:meta])+ struct $name:ident;)+) => ($(
        $(#[$doc])+
        ///
        ///The hue is a circular type, where `0` and `360` is the same, and
        ///it's normalized to `(-180, 180]` when it's converted to a linear
        ///number (like `f32`). This makes many calculations easier, but may
        ///also have some surprising effects if it's expected to act as a
        ///linear number.
        #[derive(Clone, Copy, Debug, Default)]
        pub struct $name<T: Float = f32>(T);

        impl<T: Float> $name<T> {
            ///Create a new hue from radians, instead of degrees.
            pub fn from_radians(radians: T) -> $name<T> {
                $name(radians * flt(180.0) / flt(PI))
            }

            ///Get the hue as degrees, in the range `(-180, 180]`.
            pub fn to_degrees(self) -> T {
                normalize_angle(self.0)
            }

            ///Convert the hue to radians, in the range `(-π, π]`.
            pub fn to_radians(self) -> T {
                normalize_angle(self.0) * flt(PI) / flt(180.0)
            }

            ///Convert the hue to positive degrees, in the range `[0, 360)`.
            pub fn to_positive_degrees(self) -> T {
                normalize_angle_positive(self.0)
            }

            ///Convert the hue to positive radians, in the range `[0, 2π)`.
            pub fn to_positive_radians(self) -> T {
                normalize_angle_positive(self.0) * flt(PI) / flt(180.0)
            }
        }

        impl<T: Float> From<T> for $name<T> {
            fn from(degrees: T) -> $name<T> {
                $name(degrees)
            }
        }

        impl Into<f64> for $name<f64> {
            fn into(self) -> f64 {
                normalize_angle(self.0)
            }
        }

        impl Into<f32> for $name<f32> {
            fn into(self) -> f32 {
                normalize_angle(self.0)
            }
        }
        impl Into<f32> for $name<f64> {
            fn into(self) -> f32 {
                normalize_angle(self.0) as f32
            }
        }

        impl<T: Float> PartialEq for $name<T> {
            fn eq(&self, other: &$name<T>) -> bool {
                let hue_s: T = (*self).to_degrees();
                let hue_o: T = (*other).to_degrees();
                hue_s.eq(&hue_o)
            }
        }

        impl<T: Float> PartialEq<T> for $name<T> {
            fn eq(&self, other: &T) -> bool {
                let hue: T = (*self).to_degrees();
                hue.eq(&normalize_angle(*other))
            }
        }

        impl<T: Float> Add<$name<T>> for $name<T> {
            type Output = $name<T>;

            fn add(self, other: $name<T>) -> $name<T> {
                $name(self.0 + other.0)
            }
        }

        impl<T: Float> Add<T> for $name<T> {
            type Output = $name<T>;

            fn add(self, other: T) -> $name<T> {
                $name(self.0 + other)
            }
        }

        impl<T: Float> Sub<$name<T>> for $name<T> {
            type Output = $name<T>;

            fn sub(self, other: $name<T>) -> $name<T> {
                $name(self.0 - other.0)
            }
        }

        impl<T: Float> Sub<T> for $name<T> {
            type Output = $name<T>;

            fn sub(self, other: T) -> $name<T> {
                $name(self.0 - other)
            }
        }
    )+)
}

make_hues! {
    ///A hue type for the CIE L\*a\*b\* family of color spaces.
    ///
    ///It's measured in degrees and it's based on the four physiological
    ///elementary colors _red_, _yellow_, _green_ and _blue_. This makes it
    ///different from the hue of RGB based color spaces.
    struct LabHue;

    ///A hue type for the RGB family of color spaces.
    ///
    ///It's measured in degrees and uses the three additive primaries _red_,
    ///_green_ and _blue_.
    struct RgbHue;
}

fn normalize_angle<T: Float>(deg: T) -> T {
    let c360 = flt(360.0);
    let c180 = flt(180.0);
    deg - (((deg + c180) / c360) - T::one()).ceil() * c360
}

fn normalize_angle_positive<T: Float>(deg: T) -> T {
    let c360 = flt(360.0);
    deg - ((deg / c360).floor() * c360)
}

#[cfg(test)]
mod test {
    use RgbHue;
    use super::{normalize_angle, normalize_angle_positive};

    #[test]
    fn normalize_angle_0_360() {
        let inp = [
            -1000.0_f32,
            -900.0,
            -360.5,
            -360.0,
            -359.5,
            -240.0,
            -180.5,
            -180.0,
            -179.5,
            -90.0,
            -0.5,
            0.0,
            0.5,
            90.0,
            179.5,
            180.0,
            180.5,
            240.0,
            359.5,
            360.0,
            360.5,
            900.0,
            1000.0,
        ];

        let expected = [
            80.0_f32, 180.0, 359.5, 0.0, 0.5, 120.0, 179.5, 180.0, 180.5, 270.0, 359.5, 0.0, 0.5,
            90.0, 179.5, 180.0, 180.5, 240.0, 359.5, 0.0, 0.5, 180.0, 280.0,
        ];

        let result: Vec<f32> = inp.iter().map(|x| normalize_angle_positive(*x)).collect();
        for (res, exp) in result.iter().zip(expected.iter()) {
            assert_eq!(res, exp);
        }
    }

    #[test]
    fn normalize_angle_180_180() {
        let inp = [
            -1000.0_f32,
            -900.0,
            -360.5,
            -360.0,
            -359.5,
            -240.0,
            -180.5,
            -180.0,
            -179.5,
            -90.0,
            -0.5,
            0.0,
            0.5,
            90.0,
            179.5,
            180.0,
            180.5,
            240.0,
            359.5,
            360.0,
            360.5,
            900.0,
            1000.0,
        ];

        let expected = [
            80.0, 180.0, -0.5, 0.0, 0.5, 120.0, 179.5, 180.0, -179.5, -90.0, -0.5, 0.0, 0.5, 90.0,
            179.5, 180.0, -179.5, -120.0, -0.5, 0.0, 0.5, 180.0, -80.0,
        ];

        let result: Vec<f32> = inp.iter().map(|x| normalize_angle(*x)).collect();
        for (res, exp) in result.iter().zip(expected.iter()) {
            assert_eq!(res, exp);
        }
    }

    #[test]
    fn float_conversion() {
        for i in -180..180 {
            let hue = RgbHue::from(4.0 * i as f32);

            let degs = hue.to_degrees();
            assert!(degs > -180.0 && degs <= 180.0);

            let pos_degs = hue.to_positive_degrees();
            assert!(pos_degs >= 0.0 && pos_degs < 360.0);

            assert_eq!(RgbHue::from(degs), RgbHue::from(pos_degs));
        }
    }
}