1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
use super::dll::{DoublyLinkedList, Item, Node};
use parking_lot::Mutex;
use std::convert::TryFrom;
use std::ptr;

/// A simple LRU cache.
pub struct Lru {
    shards: Vec<Mutex<Shard>>,
}

unsafe impl Sync for Lru {}

impl Lru {
    /// Instantiates a new `Lru` cache.
    pub fn new(cache_capacity: u64) -> Self {
        assert!(
            cache_capacity >= 256,
            "Please configure the cache \
             capacity to be at least 256 bytes"
        );
        let n_shards = 256;
        let shard_capacity = cache_capacity / n_shards as u64;

        let mut shards = Vec::with_capacity(n_shards);
        shards.resize_with(n_shards, || Mutex::new(Shard::new(shard_capacity)));

        Self { shards }
    }

    /// Called when an item is accessed. Returns a Vec of items to be
    /// evicted.
    ///
    /// Items layout:
    ///   items:   1 2 3 4 5 6 7 8 9 10
    ///   shards:  1 0 1 0 1 0 1 0 1 0
    ///   shard 0:   2   4   6   8   10
    ///   shard 1: 1   3   5   7   9
    pub fn accessed(&self, id: Item, item_size: u64) -> Vec<Item> {
        let shards = self.shards.len() as u64;
        let (shard_idx, item_pos) = (id % shards, id / shards);
        let shard_mu: &Mutex<Shard> = &self.shards[safe_usize(shard_idx)];
        let mut shard = shard_mu.lock();
        let mut to_evict = shard.accessed(safe_usize(item_pos), item_size);
        // map shard internal offsets to global items ids
        to_evict
            .iter_mut()
            .for_each(|pos| *pos = (*pos * shards) + shard_idx);
        to_evict
    }
}

#[derive(Clone)]
struct Entry {
    ptr: *mut Node,
    size: u64,
}

impl Default for Entry {
    fn default() -> Self {
        Self {
            ptr: ptr::null_mut(),
            size: 0,
        }
    }
}

struct Shard {
    list: DoublyLinkedList,
    entries: Vec<Entry>,
    capacity: u64,
    size: u64,
}

impl Shard {
    fn new(capacity: u64) -> Self {
        assert!(capacity > 0, "shard capacity must be non-zero");

        Self {
            list: DoublyLinkedList::default(),
            entries: vec![],
            capacity,
            size: 0,
        }
    }

    /// Items in the shard list are indexes of the entries.
    fn accessed(&mut self, pos: usize, size: u64) -> Vec<Item> {
        if pos >= self.entries.len() {
            self.entries.resize(pos + 1, Entry::default());
        }

        {
            let entry = &mut self.entries[pos];

            self.size -= entry.size;
            entry.size = size;
            self.size += size;

            if entry.ptr.is_null() {
                entry.ptr = self.list.push_head(Item::try_from(pos).unwrap());
            } else {
                entry.ptr = self.list.promote(entry.ptr);
            }
        }

        let mut to_evict = vec![];
        while self.size > self.capacity {
            if self.list.len() == 1 {
                // don't evict what we just added
                break;
            }

            let min_pid = self.list.pop_tail().unwrap();
            let min_pid_idx = safe_usize(min_pid);

            self.entries[min_pid_idx].ptr = ptr::null_mut();

            to_evict.push(min_pid);

            self.size -= self.entries[min_pid_idx].size;
            self.entries[min_pid_idx].size = 0;
        }

        to_evict
    }
}

#[inline]
fn safe_usize(value: Item) -> usize {
    usize::try_from(value).unwrap()
}