1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
use libc::{c_void, c_char, c_int};
use std::ptr;
use std::mem;
use ffi;

use {cvt, cvt_p};
use bio::{MemBio, MemBioSlice};
use dsa::Dsa;
use rsa::Rsa;
use error::ErrorStack;
use util::{CallbackState, invoke_passwd_cb};
use types::{OpenSslType, OpenSslTypeRef};

type_!(PKey, PKeyRef, ffi::EVP_PKEY, ffi::EVP_PKEY_free);

impl PKeyRef {
    /// Get a reference to the interal RSA key for direct access to the key components
    pub fn rsa(&self) -> Result<Rsa, ErrorStack> {
        unsafe {
            let rsa = try!(cvt_p(ffi::EVP_PKEY_get1_RSA(self.as_ptr())));
            // this is safe as the ffi increments a reference counter to the internal key
            Ok(Rsa::from_ptr(rsa))
        }
    }

    /// Stores private key as a PEM
    // FIXME: also add password and encryption
    pub fn private_key_to_pem(&self) -> Result<Vec<u8>, ErrorStack> {
        let mem_bio = try!(MemBio::new());
        unsafe {
            try!(cvt(ffi::PEM_write_bio_PrivateKey(mem_bio.as_ptr(),
                                                   self.as_ptr(),
                                                   ptr::null(),
                                                   ptr::null_mut(),
                                                   -1,
                                                   None,
                                                   ptr::null_mut())));

        }
        Ok(mem_bio.get_buf().to_owned())
    }

    /// Encode public key in PEM format
    pub fn public_key_to_pem(&self) -> Result<Vec<u8>, ErrorStack> {
        let mem_bio = try!(MemBio::new());
        unsafe {
            try!(cvt(ffi::PEM_write_bio_PUBKEY(mem_bio.as_ptr(), self.as_ptr())));
        }
        Ok(mem_bio.get_buf().to_owned())
    }

    /// Encode public key in DER format
    pub fn public_key_to_der(&self) -> Result<Vec<u8>, ErrorStack> {
        let mem_bio = try!(MemBio::new());
        unsafe {
            try!(cvt(ffi::i2d_PUBKEY_bio(mem_bio.as_ptr(), self.as_ptr())));
        }
        Ok(mem_bio.get_buf().to_owned())
    }

    pub fn public_eq(&self, other: &PKeyRef) -> bool {
        unsafe { ffi::EVP_PKEY_cmp(self.as_ptr(), other.as_ptr()) == 1 }
    }
}

unsafe impl Send for PKey {}
unsafe impl Sync for PKey {}

impl PKey {
    /// Create a new `PKey` containing an RSA key.
    pub fn from_rsa(rsa: Rsa) -> Result<PKey, ErrorStack> {
        unsafe {
            let evp = try!(cvt_p(ffi::EVP_PKEY_new()));
            let pkey = PKey(evp);
            try!(cvt(ffi::EVP_PKEY_assign(pkey.0, ffi::EVP_PKEY_RSA, rsa.as_ptr() as *mut _)));
            mem::forget(rsa);
            Ok(pkey)
        }
    }

    /// Create a new `PKey` containing a DSA key.
    pub fn from_dsa(dsa: Dsa) -> Result<PKey, ErrorStack> {
        unsafe {
            let evp = try!(cvt_p(ffi::EVP_PKEY_new()));
            let pkey = PKey(evp);
            try!(cvt(ffi::EVP_PKEY_assign(pkey.0, ffi::EVP_PKEY_DSA, dsa.as_ptr() as *mut _)));
            mem::forget(dsa);
            Ok(pkey)
        }
    }

    /// Create a new `PKey` containing an HMAC key.
    pub fn hmac(key: &[u8]) -> Result<PKey, ErrorStack> {
        unsafe {
            assert!(key.len() <= c_int::max_value() as usize);
            let key = try!(cvt_p(ffi::EVP_PKEY_new_mac_key(ffi::EVP_PKEY_HMAC,
                                                           ptr::null_mut(),
                                                           key.as_ptr() as *const _,
                                                           key.len() as c_int)));
            Ok(PKey(key))
        }
    }

    /// Reads private key from PEM, takes ownership of handle
    pub fn private_key_from_pem(buf: &[u8]) -> Result<PKey, ErrorStack> {
        ffi::init();
        let mem_bio = try!(MemBioSlice::new(buf));
        unsafe {
            let evp = try!(cvt_p(ffi::PEM_read_bio_PrivateKey(mem_bio.as_ptr(),
                                                              ptr::null_mut(),
                                                              None,
                                                              ptr::null_mut())));
            Ok(PKey::from_ptr(evp))
        }
    }

    /// Read a private key from PEM, supplying a password callback to be invoked if the private key
    /// is encrypted.
    ///
    /// The callback will be passed the password buffer and should return the number of characters
    /// placed into the buffer.
    pub fn private_key_from_pem_cb<F>(buf: &[u8], pass_cb: F) -> Result<PKey, ErrorStack>
        where F: FnOnce(&mut [c_char]) -> usize
    {
        ffi::init();
        let mut cb = CallbackState::new(pass_cb);
        let mem_bio = try!(MemBioSlice::new(buf));
        unsafe {
            let evp = try!(cvt_p(ffi::PEM_read_bio_PrivateKey(mem_bio.as_ptr(),
                                                              ptr::null_mut(),
                                                              Some(invoke_passwd_cb::<F>),
                                                              &mut cb as *mut _ as *mut c_void)));
            Ok(PKey::from_ptr(evp))
        }
    }

    /// Reads public key from PEM, takes ownership of handle
    pub fn public_key_from_pem(buf: &[u8]) -> Result<PKey, ErrorStack> {
        ffi::init();
        let mem_bio = try!(MemBioSlice::new(buf));
        unsafe {
            let evp = try!(cvt_p(ffi::PEM_read_bio_PUBKEY(mem_bio.as_ptr(),
                                                          ptr::null_mut(),
                                                          None,
                                                          ptr::null_mut())));
            Ok(PKey::from_ptr(evp))
        }
    }
}

#[cfg(test)]
mod tests {
    #[test]
    fn test_private_key_from_pem() {
        let key = include_bytes!("../test/key.pem");
        super::PKey::private_key_from_pem(key).unwrap();
    }

    #[test]
    fn test_public_key_from_pem() {
        let key = include_bytes!("../test/key.pem.pub");
        super::PKey::public_key_from_pem(key).unwrap();
    }

    #[test]
    fn test_pem() {
        let key = include_bytes!("../test/key.pem");
        let key = super::PKey::private_key_from_pem(key).unwrap();

        let priv_key = key.private_key_to_pem().unwrap();
        let pub_key = key.public_key_to_pem().unwrap();

        // As a super-simple verification, just check that the buffers contain
        // the `PRIVATE KEY` or `PUBLIC KEY` strings.
        assert!(priv_key.windows(11).any(|s| s == b"PRIVATE KEY"));
        assert!(pub_key.windows(10).any(|s| s == b"PUBLIC KEY"));
    }
}