1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
//! Public Raft interface and data types.

#[cfg(test)] mod declare_raft_types_test;
mod external_request;
mod impl_raft_blocking_write;
pub(crate) mod message;
mod raft_inner;
pub mod responder;
mod runtime_config_handle;
pub mod trigger;

use std::collections::BTreeMap;
use std::error::Error;

pub(crate) use self::external_request::BoxCoreFn;

pub(in crate::raft) mod core_state;

use std::fmt::Debug;
use std::future::Future;
use std::marker::PhantomData;
use std::sync::Arc;
use std::time::Duration;

use core_state::CoreState;
pub use message::AppendEntriesRequest;
pub use message::AppendEntriesResponse;
pub use message::ClientWriteResponse;
pub use message::ClientWriteResult;
pub use message::InstallSnapshotRequest;
pub use message::InstallSnapshotResponse;
pub use message::SnapshotResponse;
pub use message::VoteRequest;
pub use message::VoteResponse;
use tokio::sync::mpsc;
use tokio::sync::watch;
use tokio::sync::Mutex;
use tracing::trace_span;
use tracing::Instrument;
use tracing::Level;

use crate::async_runtime::AsyncOneshotSendExt;
use crate::config::Config;
use crate::config::RuntimeConfig;
use crate::core::command_state::CommandState;
use crate::core::raft_msg::external_command::ExternalCommand;
use crate::core::raft_msg::RaftMsg;
use crate::core::replication_lag;
use crate::core::sm::worker;
use crate::core::RaftCore;
use crate::core::Tick;
use crate::engine::Engine;
use crate::engine::EngineConfig;
use crate::error::CheckIsLeaderError;
use crate::error::ClientWriteError;
use crate::error::Fatal;
use crate::error::Infallible;
use crate::error::InitializeError;
use crate::error::RaftError;
use crate::membership::IntoNodes;
use crate::metrics::RaftDataMetrics;
use crate::metrics::RaftMetrics;
use crate::metrics::RaftServerMetrics;
use crate::metrics::Wait;
use crate::metrics::WaitError;
use crate::network::RaftNetworkFactory;
use crate::raft::raft_inner::RaftInner;
use crate::raft::responder::Responder;
pub use crate::raft::runtime_config_handle::RuntimeConfigHandle;
use crate::raft::trigger::Trigger;
use crate::storage::RaftLogStorage;
use crate::storage::RaftStateMachine;
use crate::type_config::alias::AsyncRuntimeOf;
use crate::type_config::alias::ResponderOf;
use crate::type_config::alias::ResponderReceiverOf;
use crate::type_config::alias::SnapshotDataOf;
use crate::AsyncRuntime;
use crate::LogId;
use crate::LogIdOptionExt;
use crate::MessageSummary;
use crate::OptionalSend;
use crate::RaftState;
pub use crate::RaftTypeConfig;
use crate::Snapshot;
use crate::StorageHelper;
use crate::Vote;

/// Define types for a Raft type configuration.
///
/// Since Rust has some limitations when deriving traits for types with generic arguments
/// and most types are parameterized by [`RaftTypeConfig`], we need to add supertraits to
/// a type implementing [`RaftTypeConfig`].
///
/// This macro does exactly that.
///
/// Example:
/// ```ignore
/// openraft::declare_raft_types!(
///    pub TypeConfig:
///        D            = ClientRequest,
///        R            = ClientResponse,
///        NodeId       = u64,
///        Node         = openraft::BasicNode,
///        Entry        = openraft::Entry<TypeConfig>,
///        SnapshotData = Cursor<Vec<u8>>,
///        Responder    = openraft::impls::OneshotResponder<TypeConfig>,
///        AsyncRuntime = openraft::TokioRuntime,
/// );
/// ```
///
/// Types can be omitted, and the following default type will be used:
/// - `D`:            `String`
/// - `R`:            `String`
/// - `NodeId`:       `u64`
/// - `Node`:         `::openraft::impls::BasicNode`
/// - `Entry`:        `::openraft::impls::Entry<Self>`
/// - `SnapshotData`: `Cursor<Vec<u8>>`
/// - `Responder`:    `::openraft::impls::OneshotResponder<Self>`
/// - `AsyncRuntime`: `::openraft::impls::TokioRuntime`
///
/// For example, to declare with only `D` and `R` types:
/// ```ignore
/// openraft::declare_raft_types!(
///    pub TypeConfig:
///        D = ClientRequest,
///        R = ClientResponse,
/// );
/// ```
///
/// Or just use the default type config:
/// ```ignore
/// openraft::declare_raft_types!(pub TypeConfig);
/// ```
#[macro_export]
macro_rules! declare_raft_types {
    // Add a trailing colon to    `declare_raft_types(MyType)`,
    // Make it the standard form: `declare_raft_types(MyType:)`.
    ($(#[$outer:meta])* $visibility:vis $id:ident) => {
        $crate::declare_raft_types!($(#[$outer])* $visibility $id:);
    };

    // The main entry of this macro
    ($(#[$outer:meta])* $visibility:vis $id:ident: $($(#[$inner:meta])* $type_id:ident = $type:ty),* $(,)? ) => {
        $(#[$outer])*
        #[derive(Debug, Clone, Copy, Default, Eq, PartialEq, Ord, PartialOrd)]
        #[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
        $visibility struct $id {}

        impl $crate::RaftTypeConfig for $id {
            // `expand!(KEYED, ...)` ignores the duplicates.
            // Thus by appending default types after user defined types,
            // the absent user defined types are filled with default types.
            $crate::openraft_macros::expand!(
                KEYED,
                (T, ATTR, V) => {ATTR type T = V;},
                $(($type_id, $(#[$inner])*, $type),)*

                // Default types:
                (D            , , String                                ),
                (R            , , String                                ),
                (NodeId       , , u64                                   ),
                (Node         , , $crate::impls::BasicNode              ),
                (Entry        , , $crate::impls::Entry<Self>            ),
                (SnapshotData , , Cursor<Vec<u8>>                       ),
                (Responder    , , $crate::impls::OneshotResponder<Self> ),
                (AsyncRuntime , , $crate::impls::TokioRuntime           ),
            );

        }
    };
}

/// The Raft API.
///
/// This type implements the full Raft spec, and is the interface to a running Raft node.
/// Applications building on top of Raft will use this to spawn a Raft task and interact with
/// the spawned task.
///
/// For more information on the Raft protocol, see
/// [the specification here](https://raft.github.io/raft.pdf) (**pdf warning**).
///
/// ### Clone
///
/// This type implements `Clone`, and cloning itself is very cheap and helps to facilitate use with
/// async workflows.
///
/// ### Shutting down
///
/// If any of the interfaces returns a `RaftError::Fatal`, this indicates that the Raft node
/// is shutting down. If the parent application needs to shutdown the Raft node for any reason,
/// calling `shutdown` will do the trick.
#[derive(Clone)]
pub struct Raft<C>
where C: RaftTypeConfig
{
    inner: Arc<RaftInner<C>>,
}

impl<C> Raft<C>
where C: RaftTypeConfig
{
    /// Create and spawn a new Raft task.
    ///
    /// ### `id`
    /// The ID which the spawned Raft task will use to identify itself within the cluster.
    /// Applications must guarantee that the ID provided to this function is stable, and should be
    /// persisted in a well known location, probably alongside the Raft log and the application's
    /// state machine. This ensures that restarts of the node will yield the same ID every time.
    ///
    /// ### `config`
    /// Raft's runtime config. See the docs on the `Config` object for more details.
    ///
    /// ### `network`
    /// An implementation of the `RaftNetworkFactory` trait which will be used by Raft for sending
    /// RPCs to peer nodes within the cluster. See the docs on the `RaftNetworkFactory` trait
    /// for more details.
    ///
    /// ### `storage`
    /// An implementation of the `RaftStorage` trait which will be used by Raft for data storage.
    /// See the docs on the `RaftStorage` trait for more details.
    #[tracing::instrument(level="debug", skip_all, fields(cluster=%config.cluster_name))]
    pub async fn new<LS, N, SM>(
        id: C::NodeId,
        config: Arc<Config>,
        network: N,
        mut log_store: LS,
        mut state_machine: SM,
    ) -> Result<Self, Fatal<C::NodeId>>
    where
        N: RaftNetworkFactory<C>,
        LS: RaftLogStorage<C>,
        SM: RaftStateMachine<C>,
    {
        let (tx_api, rx_api) = mpsc::unbounded_channel();
        let (tx_notify, rx_notify) = mpsc::unbounded_channel();
        let (tx_metrics, rx_metrics) = watch::channel(RaftMetrics::new_initial(id));
        let (tx_data_metrics, rx_data_metrics) = watch::channel(RaftDataMetrics::default());
        let (tx_server_metrics, rx_server_metrics) = watch::channel(RaftServerMetrics::default());
        let (tx_shutdown, rx_shutdown) = C::AsyncRuntime::oneshot();

        let tick_handle = Tick::spawn(
            Duration::from_millis(config.heartbeat_interval * 3 / 2),
            tx_notify.clone(),
            config.enable_tick,
        );

        let runtime_config = Arc::new(RuntimeConfig::new(&config));

        let core_span = tracing::span!(
            parent: tracing::Span::current(),
            Level::DEBUG,
            "RaftCore",
            id = display(id),
            cluster = display(&config.cluster_name)
        );

        let eng_config = EngineConfig::new::<C::AsyncRuntime>(id, config.as_ref());

        let state = {
            let mut helper = StorageHelper::new(&mut log_store, &mut state_machine);
            helper.get_initial_state().await?
        };

        let engine = Engine::new(state, eng_config);

        let sm_handle = worker::Worker::spawn(state_machine, tx_notify.clone());

        let core: RaftCore<C, N, LS, SM> = RaftCore {
            id,
            config: config.clone(),
            runtime_config: runtime_config.clone(),
            network,
            log_store,
            sm_handle,

            engine,

            client_resp_channels: BTreeMap::new(),

            leader_data: None,

            tx_api: tx_api.clone(),
            rx_api,

            tx_notify,
            rx_notify,

            tx_metrics,
            tx_data_metrics,
            tx_server_metrics,

            command_state: CommandState::default(),
            span: core_span,

            _p: Default::default(),
        };

        let core_handle = C::AsyncRuntime::spawn(core.main(rx_shutdown).instrument(trace_span!("spawn").or_current()));

        let inner = RaftInner {
            id,
            config,
            runtime_config,
            tick_handle,
            tx_api,
            rx_metrics,
            rx_data_metrics,
            rx_server_metrics,
            tx_shutdown: Mutex::new(Some(tx_shutdown)),
            core_state: Mutex::new(CoreState::Running(core_handle)),

            snapshot: Mutex::new(None),
        };

        Ok(Self { inner: Arc::new(inner) })
    }

    /// Return a handle to update runtime config.
    ///
    /// Such enabling/disabling heartbeat, election, etc.
    ///
    /// Example:
    /// ```ignore
    /// let raft = Raft::new(...).await?;
    /// raft.runtime_config().heartbeat(true);
    /// ```
    pub fn runtime_config(&self) -> RuntimeConfigHandle<C> {
        RuntimeConfigHandle::new(self.inner.as_ref())
    }

    /// Return the config of this Raft node.
    pub fn config(&self) -> &Arc<Config> {
        &self.inner.config
    }

    /// Enable or disable raft internal ticker.
    #[deprecated(since = "0.8.4", note = "use `Raft::runtime_config().tick()` instead")]
    pub fn enable_tick(&self, enabled: bool) {
        self.runtime_config().tick(enabled)
    }

    #[deprecated(since = "0.8.4", note = "use `Raft::runtime_config().heartbeat()` instead")]
    pub fn enable_heartbeat(&self, enabled: bool) {
        self.runtime_config().heartbeat(enabled)
    }

    #[deprecated(since = "0.8.4", note = "use `Raft::runtime_config().elect()` instead")]
    pub fn enable_elect(&self, enabled: bool) {
        self.runtime_config().elect(enabled)
    }

    /// Return a handle to manually trigger raft actions, such as elect or build snapshot.
    ///
    /// Example:
    /// ```ignore
    /// let raft = Raft::new(...).await?;
    /// raft.trigger().elect().await?;
    /// ```
    pub fn trigger(&self) -> Trigger<C> {
        Trigger::new(self.inner.as_ref())
    }

    /// Trigger election at once and return at once.
    #[deprecated(since = "0.8.4", note = "use `Raft::trigger().elect()` instead")]
    pub async fn trigger_elect(&self) -> Result<(), Fatal<C::NodeId>> {
        self.trigger().elect().await
    }

    /// Trigger a heartbeat at once and return at once.
    #[deprecated(since = "0.8.4", note = "use `Raft::trigger().heartbeat()` instead")]
    pub async fn trigger_heartbeat(&self) -> Result<(), Fatal<C::NodeId>> {
        self.trigger().heartbeat().await
    }

    /// Trigger to build a snapshot at once and return at once.
    #[deprecated(since = "0.8.4", note = "use `Raft::trigger().snapshot()` instead")]
    pub async fn trigger_snapshot(&self) -> Result<(), Fatal<C::NodeId>> {
        self.trigger().snapshot().await
    }

    /// Initiate the log purge up to and including the given `upto` log index.
    #[deprecated(since = "0.8.4", note = "use `Raft::trigger().purge_log()` instead")]
    pub async fn purge_log(&self, upto: u64) -> Result<(), Fatal<C::NodeId>> {
        self.trigger().purge_log(upto).await
    }

    /// Submit an AppendEntries RPC to this Raft node.
    ///
    /// These RPCs are sent by the cluster leader to replicate log entries (§5.3), and are also
    /// used as heartbeats (§5.2).
    #[tracing::instrument(level = "debug", skip(self, rpc))]
    pub async fn append_entries(
        &self,
        rpc: AppendEntriesRequest<C>,
    ) -> Result<AppendEntriesResponse<C::NodeId>, RaftError<C::NodeId>> {
        tracing::debug!(rpc = display(rpc.summary()), "Raft::append_entries");

        let (tx, rx) = C::AsyncRuntime::oneshot();
        self.inner.call_core(RaftMsg::AppendEntries { rpc, tx }, rx).await
    }

    /// Submit a VoteRequest (RequestVote in the spec) RPC to this Raft node.
    ///
    /// These RPCs are sent by cluster peers which are in candidate state attempting to gather votes
    /// (§5.2).
    #[tracing::instrument(level = "debug", skip(self, rpc))]
    pub async fn vote(&self, rpc: VoteRequest<C::NodeId>) -> Result<VoteResponse<C::NodeId>, RaftError<C::NodeId>> {
        tracing::info!(rpc = display(rpc.summary()), "Raft::vote()");

        let (tx, rx) = C::AsyncRuntime::oneshot();
        self.inner.call_core(RaftMsg::RequestVote { rpc, tx }, rx).await
    }

    /// Get the latest snapshot from the state machine.
    ///
    /// It returns error only when `RaftCore` fails to serve the request, e.g., Encountering a
    /// storage error or shutting down.
    #[tracing::instrument(level = "debug", skip_all)]
    pub async fn get_snapshot(&self) -> Result<Option<Snapshot<C>>, RaftError<C::NodeId>> {
        tracing::debug!("Raft::get_snapshot()");

        let (tx, rx) = C::AsyncRuntime::oneshot();
        let cmd = ExternalCommand::GetSnapshot { tx };
        self.inner.call_core(RaftMsg::ExternalCommand { cmd }, rx).await
    }

    /// Get a snapshot data for receiving snapshot from the leader.
    #[tracing::instrument(level = "debug", skip_all)]
    pub async fn begin_receiving_snapshot(&self) -> Result<Box<SnapshotDataOf<C>>, RaftError<C::NodeId, Infallible>> {
        tracing::info!("Raft::begin_receiving_snapshot()");

        let (tx, rx) = AsyncRuntimeOf::<C>::oneshot();
        let resp = self.inner.call_core(RaftMsg::BeginReceivingSnapshot { tx }, rx).await?;
        Ok(resp)
    }

    /// Install a completely received snapshot to the state machine.
    ///
    /// This method is used to implement a totally application defined snapshot transmission.
    /// The application receives a snapshot from the leader, in chunks or a stream, and
    /// then rebuild a snapshot, then pass the snapshot to Raft to install.
    #[tracing::instrument(level = "debug", skip_all)]
    pub async fn install_full_snapshot(
        &self,
        vote: Vote<C::NodeId>,
        snapshot: Snapshot<C>,
    ) -> Result<SnapshotResponse<C::NodeId>, Fatal<C::NodeId>> {
        tracing::info!("Raft::install_full_snapshot()");

        let (tx, rx) = C::AsyncRuntime::oneshot();
        let res = self.inner.call_core(RaftMsg::InstallFullSnapshot { vote, snapshot, tx }, rx).await;
        match res {
            Ok(x) => Ok(x),
            Err(e) => {
                // Safe unwrap: `RaftError<Infallible>` must be a Fatal.
                Err(e.into_fatal().unwrap())
            }
        }
    }

    /// Receive an `InstallSnapshotRequest`.
    ///
    /// These RPCs are sent by the cluster leader in order to bring a new node or a slow node
    /// up-to-speed with the leader.
    ///
    /// If receiving is finished `done == true`, it installs the snapshot to the state machine.
    /// Nothing will be done if the input snapshot is older than the state machine.
    #[cfg_attr(
        feature = "generic-snapshot-data",
        deprecated(
            since = "0.9.0",
            note = "with `generic-snapshot-shot` enabled, use `Raft::install_full_snapshot()` instead"
        )
    )]
    #[tracing::instrument(level = "debug", skip_all)]
    pub async fn install_snapshot(
        &self,
        req: InstallSnapshotRequest<C>,
    ) -> Result<InstallSnapshotResponse<C::NodeId>, RaftError<C::NodeId, crate::error::InstallSnapshotError>>
    where
        C::SnapshotData: tokio::io::AsyncRead + tokio::io::AsyncWrite + tokio::io::AsyncSeek + Unpin,
    {
        tracing::debug!(req = display(&req), "Raft::install_snapshot()");

        let req_vote = req.vote;
        let my_vote = self.with_raft_state(|state| *state.vote_ref()).await?;
        let resp = InstallSnapshotResponse { vote: my_vote };

        // Check vote.
        // It is not mandatory because it is just a read operation
        // but prevent unnecessary snapshot transfer early.
        {
            if req_vote >= my_vote {
                // Ok
            } else {
                tracing::info!("vote {} is rejected by local vote: {}", req_vote, my_vote);
                return Ok(resp);
            }
        }

        let finished_snapshot = {
            use crate::network::snapshot_transport::Chunked;
            use crate::network::snapshot_transport::SnapshotTransport;

            let mut streaming = self.inner.snapshot.lock().await;
            Chunked::receive_snapshot(&mut *streaming, self, req).await?
        };

        if let Some(snapshot) = finished_snapshot {
            let resp = self.install_full_snapshot(req_vote, snapshot).await?;
            return Ok(resp.into());
        }
        Ok(resp)
    }

    /// Get the ID of the current leader from this Raft node.
    ///
    /// This method is based on the Raft metrics system which does a good job at staying
    /// up-to-date; however, the `is_leader` method must still be used to guard against stale
    /// reads. This method is perfect for making decisions on where to route client requests.
    #[tracing::instrument(level = "debug", skip(self))]
    pub async fn current_leader(&self) -> Option<C::NodeId> {
        self.metrics().borrow().current_leader
    }

    /// Check to ensure this node is still the cluster leader, in order to guard against stale reads
    /// (§8).
    ///
    /// The actual read operation itself is up to the application, this method just ensures that
    /// the read will not be stale.
    #[deprecated(since = "0.9.0", note = "use `Raft::ensure_linearizable()` instead")]
    #[tracing::instrument(level = "debug", skip(self))]
    pub async fn is_leader(&self) -> Result<(), RaftError<C::NodeId, CheckIsLeaderError<C::NodeId, C::Node>>> {
        let (tx, rx) = C::AsyncRuntime::oneshot();
        let _ = self.inner.call_core(RaftMsg::CheckIsLeaderRequest { tx }, rx).await?;
        Ok(())
    }

    /// Ensures a read operation performed following this method are linearizable across the
    /// cluster.
    ///
    /// This method is just a shorthand for calling [`get_read_log_id()`](Raft::get_read_log_id) and
    /// then calling [Raft::wait].
    ///
    /// This method confirms the node's leadership at the time of invocation by sending
    /// heartbeats to a quorum of followers, and the state machine is up to date.
    /// This method blocks until all these conditions are met.
    ///
    /// Returns:
    /// - `Ok(read_log_id)` on successful confirmation that the node is the leader. `read_log_id`
    ///   represents the log id up to which the state machine has applied to ensure a linearizable
    ///   read.
    /// - `Err(RaftError<CheckIsLeaderError>)` if it detects a higher term, or if it fails to
    ///   communicate with a quorum of followers.
    ///
    /// # Examples
    /// ```ignore
    /// my_raft.ensure_linearizable().await?;
    /// // Proceed with the state machine read
    /// ```
    /// Read more about how it works: [Read Operation](crate::docs::protocol::read)
    #[tracing::instrument(level = "debug", skip(self))]
    pub async fn ensure_linearizable(
        &self,
    ) -> Result<Option<LogId<C::NodeId>>, RaftError<C::NodeId, CheckIsLeaderError<C::NodeId, C::Node>>> {
        let (read_log_id, applied) = self.get_read_log_id().await?;

        if read_log_id.index() > applied.index() {
            self.wait(None)
                .applied_index_at_least(read_log_id.index(), "ensure_linearizable")
                .await
                .map_err(|e| match e {
                    WaitError::Timeout(_, _) => {
                        unreachable!("did not specify timeout")
                    }
                    WaitError::ShuttingDown => Fatal::Stopped,
                })?;
        }
        Ok(read_log_id)
    }

    /// Ensures this node is leader and returns the log id up to which the state machine should
    /// apply to ensure a read can be linearizable across the cluster.
    ///
    /// The leadership is ensured by sending heartbeats to a quorum of followers.
    /// Note that this is just the first step for linearizable read. The second step is to wait for
    /// state machine to reach the returned `read_log_id`.
    ///
    /// Returns:
    /// - `Ok((read_log_id, last_applied_log_id))` on successful confirmation that the node is the
    ///   leader. `read_log_id` represents the log id up to which the state machine should apply to
    ///   ensure a linearizable read.
    /// - `Err(RaftError<CheckIsLeaderError>)` if it detects a higher term, or if it fails to
    ///   communicate with a quorum of followers.
    ///
    /// The caller should then wait for `last_applied_log_id` to catch up, which can be done by
    /// subscribing to [`Raft::metrics`] and waiting for `last_applied_log_id` to
    /// reach `read_log_id`.
    ///
    /// # Examples
    /// ```ignore
    /// let (read_log_id, applied_log_id) = my_raft.get_read_log_id().await?;
    /// if read_log_id.index() > applied_log_id.index() {
    ///     my_raft.wait(None).applied_index_at_least(read_log_id.index()).await?;
    /// }
    /// // Proceed with the state machine read
    /// ```
    /// The comparison `read_log_id > applied_log_id` would also be valid in the above example.
    ///
    /// See: [Read Operation](crate::docs::protocol::read)
    #[tracing::instrument(level = "debug", skip(self))]
    pub async fn get_read_log_id(
        &self,
    ) -> Result<
        (Option<LogId<C::NodeId>>, Option<LogId<C::NodeId>>),
        RaftError<C::NodeId, CheckIsLeaderError<C::NodeId, C::Node>>,
    > {
        let (tx, rx) = C::AsyncRuntime::oneshot();
        let (read_log_id, applied) = self.inner.call_core(RaftMsg::CheckIsLeaderRequest { tx }, rx).await?;
        Ok((read_log_id, applied))
    }

    /// Submit a mutating client request to Raft to update the state of the system (§5.1).
    ///
    /// It will be appended to the log, committed to the cluster, and then applied to the
    /// application state machine. The result of applying the request to the state machine will
    /// be returned as the response from this method.
    ///
    /// Our goal for Raft is to implement linearizable semantics. If the leader crashes after
    /// committing a log entry but before responding to the client, the client may retry the
    /// command with a new leader, causing it to be executed a second time. As such, clients
    /// should assign unique serial numbers to every command. Then, the state machine should
    /// track the latest serial number processed for each client, along with the associated
    /// response. If it receives a command whose serial number has already been executed, it
    /// responds immediately without re-executing the request (§8). The
    /// `RaftStorage::apply_entry_to_state_machine` method is the perfect place to implement
    /// this.
    ///
    /// These are application specific requirements, and must be implemented by the application
    /// which is being built on top of Raft.
    #[tracing::instrument(level = "debug", skip(self, app_data))]
    pub async fn client_write<E>(
        &self,
        app_data: C::D,
    ) -> Result<ClientWriteResponse<C>, RaftError<C::NodeId, ClientWriteError<C::NodeId, C::Node>>>
    where
        ResponderReceiverOf<C>: Future<Output = Result<ClientWriteResult<C>, E>>,
        E: Error + OptionalSend,
    {
        let rx = self.client_write_ff(app_data).await?;

        let res: ClientWriteResult<C> = self.inner.recv_msg(rx).await?;

        let client_write_response = res.map_err(RaftError::APIError)?;
        Ok(client_write_response)
    }

    /// Submit a mutating client request to Raft to update the state machine, returns an application
    /// defined response receiver [`Responder::Receiver`].
    ///
    /// `_ff` means fire and forget.
    ///
    /// It is same as [`Raft::client_write`] but does not wait for the response.
    #[tracing::instrument(level = "debug", skip(self, app_data))]
    pub async fn client_write_ff(&self, app_data: C::D) -> Result<ResponderReceiverOf<C>, Fatal<C::NodeId>> {
        let (app_data, tx, rx) = ResponderOf::<C>::from_app_data(app_data);

        self.inner.send_msg(RaftMsg::ClientWriteRequest { app_data, tx }).await?;

        Ok(rx)
    }

    /// Return `true` if this node is already initialized and can not be initialized again with
    /// [`Raft::initialize`]
    pub async fn is_initialized(&self) -> Result<bool, Fatal<C::NodeId>> {
        let initialized = self.with_raft_state(|st| st.is_initialized()).await?;

        Ok(initialized)
    }

    /// Initialize a pristine Raft node with the given config.
    ///
    /// This command should be called on pristine nodes — where the log index is 0 and the node is
    /// in Learner state — as if either of those constraints are false, it indicates that the
    /// cluster is already formed and in motion. If `InitializeError::NotAllowed` is returned
    /// from this function, it is safe to ignore, as it simply indicates that the cluster is
    /// already up and running, which is ultimately the goal of this function.
    ///
    /// This command will work for single-node or multi-node cluster formation. This command
    /// should be called with all discovered nodes which need to be part of cluster, and as such
    /// it is recommended that applications be configured with an initial cluster formation delay
    /// which will allow time for the initial members of the cluster to be discovered (by the
    /// parent application) for this call.
    ///
    /// Once a node successfully initialized it will commit a new membership config
    /// log entry to store.
    /// Then it starts to work, i.e., entering Candidate state and try electing itself as the
    /// leader.
    ///
    /// More than one node performing `initialize()` with the same config is safe,
    /// with different config will result in split brain condition.
    #[tracing::instrument(level = "debug", skip(self))]
    pub async fn initialize<T>(
        &self,
        members: T,
    ) -> Result<(), RaftError<C::NodeId, InitializeError<C::NodeId, C::Node>>>
    where
        T: IntoNodes<C::NodeId, C::Node> + Debug,
    {
        let (tx, rx) = C::AsyncRuntime::oneshot();
        self.inner
            .call_core(
                RaftMsg::Initialize {
                    members: members.into_nodes(),
                    tx,
                },
                rx,
            )
            .await
    }

    /// Returns Ok() with the latest known matched log id if it should quit waiting: leader change,
    /// node removed, or replication becomes upto date.
    ///
    /// Returns Err() if it should keep waiting.
    fn check_replication_upto_date(
        &self,
        metrics: &RaftMetrics<C::NodeId, C::Node>,
        node_id: C::NodeId,
        membership_log_id: Option<LogId<C::NodeId>>,
    ) -> Result<Option<LogId<C::NodeId>>, ()> {
        if metrics.membership_config.log_id() < &membership_log_id {
            // Waiting for the latest metrics to report.
            return Err(());
        }

        if metrics.membership_config.membership().get_node(&node_id).is_none() {
            // This learner has been removed.
            return Ok(None);
        }

        let repl = match &metrics.replication {
            None => {
                // This node is no longer a leader.
                return Ok(None);
            }
            Some(x) => x,
        };

        let replication_metrics = repl;
        let target_metrics = match replication_metrics.get(&node_id) {
            None => {
                // Maybe replication is not reported yet. Keep waiting.
                return Err(());
            }
            Some(x) => x,
        };

        let matched = *target_metrics;

        let distance = replication_lag(&matched.index(), &metrics.last_log_index);

        if distance <= self.inner.config.replication_lag_threshold {
            // replication became up to date.
            return Ok(matched);
        }

        // Not up to date, keep waiting.
        Err(())
    }

    /// Provides read-only access to [`RaftState`] through a user-provided function.
    ///
    /// The function `func` is applied to the current [`RaftState`]. The result of this function,
    /// of type `V`, is returned wrapped in `Result<V, Fatal<C::NodeId>>`. `Fatal` error will be
    /// returned if failed to receive a reply from `RaftCore`.
    ///
    /// A `Fatal` error is returned if:
    /// - Raft core task is stopped normally.
    /// - Raft core task is panicked due to programming error.
    /// - Raft core task is encountered a storage error.
    ///
    /// Example for getting the current committed log id:
    /// ```ignore
    /// let committed = my_raft.with_raft_state(|st| st.committed).await?;
    /// ```
    pub async fn with_raft_state<F, V>(&self, func: F) -> Result<V, Fatal<C::NodeId>>
    where
        F: FnOnce(&RaftState<C::NodeId, C::Node, <C::AsyncRuntime as AsyncRuntime>::Instant>) -> V
            + OptionalSend
            + 'static,
        V: OptionalSend + 'static,
    {
        let (tx, rx) = C::AsyncRuntime::oneshot();

        self.external_request(|st| {
            let result = func(st);
            if let Err(_err) = tx.send(result) {
                tracing::error!("{}: to-Raft tx send error", func_name!());
            }
        });

        match rx.await {
            Ok(res) => Ok(res),
            Err(err) => {
                tracing::error!(error = display(&err), "{}: rx recv error", func_name!());

                let when = format!("{}: rx recv", func_name!());
                let fatal = self.inner.get_core_stopped_error(when, None::<u64>).await;
                Err(fatal)
            }
        }
    }

    /// Send a request to the Raft core loop in a fire-and-forget manner.
    ///
    /// The request functor will be called with a mutable reference to both the state machine
    /// and the network factory and serialized with other Raft core loop processing (e.g., client
    /// requests or general state changes). The current state of the system is passed as well.
    ///
    /// If a response is required, then the caller can store the sender of a one-shot channel
    /// in the closure of the request functor, which can then be used to send the response
    /// asynchronously.
    ///
    /// If the API channel is already closed (Raft is in shutdown), then the request functor is
    /// destroyed right away and not called at all.
    pub fn external_request<F>(&self, req: F)
    where F: FnOnce(&RaftState<C::NodeId, C::Node, <C::AsyncRuntime as AsyncRuntime>::Instant>) + OptionalSend + 'static
    {
        let req: BoxCoreFn<C> = Box::new(req);
        let _ignore_error = self.inner.tx_api.send(RaftMsg::ExternalCoreRequest { req });
    }

    /// Get a handle to the metrics channel.
    pub fn metrics(&self) -> watch::Receiver<RaftMetrics<C::NodeId, C::Node>> {
        self.inner.rx_metrics.clone()
    }

    /// Get a handle to the data metrics channel.
    pub fn data_metrics(&self) -> watch::Receiver<RaftDataMetrics<C::NodeId>> {
        self.inner.rx_data_metrics.clone()
    }

    /// Get a handle to the server metrics channel.
    pub fn server_metrics(&self) -> watch::Receiver<RaftServerMetrics<C::NodeId, C::Node>> {
        self.inner.rx_server_metrics.clone()
    }

    /// Get a handle to wait for the metrics to satisfy some condition.
    ///
    /// If `timeout` is `None`, then it will wait forever(10 years).
    /// If `timeout` is `Some`, then it will wait for the specified duration.
    ///
    /// ```ignore
    /// # use std::time::Duration;
    /// # use openraft::{State, Raft};
    ///
    /// let timeout = Duration::from_millis(200);
    ///
    /// // wait for raft log-3 to be received and applied:
    /// r.wait(Some(timeout)).log(Some(3), "log").await?;
    ///
    /// // wait for ever for raft node's current leader to become 3:
    /// r.wait(None).current_leader(2, "wait for leader").await?;
    ///
    /// // wait for raft state to become a follower
    /// r.wait(None).state(State::Follower, "state").await?;
    /// ```
    pub fn wait(&self, timeout: Option<Duration>) -> Wait<C::NodeId, C::Node, C::AsyncRuntime> {
        let timeout = match timeout {
            Some(t) => t,
            None => Duration::from_secs(86400 * 365 * 100),
        };
        Wait {
            timeout,
            rx: self.inner.rx_metrics.clone(),
            _phantom: PhantomData,
        }
    }

    /// Shutdown this Raft node.
    ///
    /// It sends a shutdown signal and waits until `RaftCore` returns.
    pub async fn shutdown(&self) -> Result<(), <C::AsyncRuntime as AsyncRuntime>::JoinError> {
        if let Some(tx) = self.inner.tx_shutdown.lock().await.take() {
            // A failure to send means the RaftCore is already shutdown. Continue to check the task
            // return value.
            let send_res = tx.send(());
            tracing::info!("sending shutdown signal to RaftCore, sending res: {:?}", send_res);
        }
        self.inner.join_core_task().await;
        if let Some(join_handle) = self.inner.tick_handle.shutdown() {
            let _ = join_handle.await;
        }

        // TODO(xp): API change: replace `JoinError` with `Fatal`,
        //           to let the caller know the return value of RaftCore task.
        Ok(())
    }
}