Struct opencv::core::VecN

source ·
#[repr(C)]
pub struct VecN<T, const N: usize>(pub [T; N]);
Expand description

docs.opencv.org Named VecN to avoid name clash with std’s Vec.

Tuple Fields§

§0: [T; N]

Implementations§

source§

impl<T> VecN<T, 4>

source

pub const fn new(v0: T, v1: T, v2: T, v3: T) -> Self

source

pub fn is_real(&self) -> bool
where T: Zero + PartialEq,

returns true iff v1 == v2 == v3 == 0

source§

impl<T, const N: usize> VecN<T, N>

source

pub const fn from_array(val: [T; N]) -> Self

source

pub const fn all(v0: T) -> Self
where T: Copy,

source

pub fn mul(&self, v: Self) -> Self
where T: MulAssign, Self: Copy,

per-element multiplication

source

pub fn to<D: NumCast + Default + Copy>(self) -> Option<VecN<D, N>>
where T: ToPrimitive,

Cast VecN to the other element type

source§

impl<F: Float> VecN<F, 2>

source

pub fn conj(&self) -> Self

conjugation (makes sense for complex numbers and quaternions)

source§

impl<F: Float> VecN<F, 3>

source

pub fn cross(&self, v: Self) -> Self

cross product of the two 3D vectors

source§

impl<F: Float> VecN<F, 4>

source

pub fn conj(&self) -> Self

conjugation (makes sense for complex numbers and quaternions)

Methods from Deref<Target = [T; N]>§

source

pub fn as_ascii(&self) -> Option<&[AsciiChar; N]>

🔬This is a nightly-only experimental API. (ascii_char)

Converts this array of bytes into a array of ASCII characters, or returns None if any of the characters is non-ASCII.

§Examples
#![feature(ascii_char)]
#![feature(const_option)]

const HEX_DIGITS: [std::ascii::Char; 16] =
    *b"0123456789abcdef".as_ascii().unwrap();

assert_eq!(HEX_DIGITS[1].as_str(), "1");
assert_eq!(HEX_DIGITS[10].as_str(), "a");
source

pub unsafe fn as_ascii_unchecked(&self) -> &[AsciiChar; N]

🔬This is a nightly-only experimental API. (ascii_char)

Converts this array of bytes into a array of ASCII characters, without checking whether they’re valid.

§Safety

Every byte in the array must be in 0..=127, or else this is UB.

1.57.0 · source

pub fn as_slice(&self) -> &[T]

Returns a slice containing the entire array. Equivalent to &s[..].

1.57.0 · source

pub fn as_mut_slice(&mut self) -> &mut [T]

Returns a mutable slice containing the entire array. Equivalent to &mut s[..].

1.77.0 · source

pub fn each_ref(&self) -> [&T; N]

Borrows each element and returns an array of references with the same size as self.

§Example
let floats = [3.1, 2.7, -1.0];
let float_refs: [&f64; 3] = floats.each_ref();
assert_eq!(float_refs, [&3.1, &2.7, &-1.0]);

This method is particularly useful if combined with other methods, like map. This way, you can avoid moving the original array if its elements are not Copy.

let strings = ["Ferris".to_string(), "♥".to_string(), "Rust".to_string()];
let is_ascii = strings.each_ref().map(|s| s.is_ascii());
assert_eq!(is_ascii, [true, false, true]);

// We can still access the original array: it has not been moved.
assert_eq!(strings.len(), 3);
1.77.0 · source

pub fn each_mut(&mut self) -> [&mut T; N]

Borrows each element mutably and returns an array of mutable references with the same size as self.

§Example

let mut floats = [3.1, 2.7, -1.0];
let float_refs: [&mut f64; 3] = floats.each_mut();
*float_refs[0] = 0.0;
assert_eq!(float_refs, [&mut 0.0, &mut 2.7, &mut -1.0]);
assert_eq!(floats, [0.0, 2.7, -1.0]);
source

pub fn split_array_ref<const M: usize>(&self) -> (&[T; M], &[T])

🔬This is a nightly-only experimental API. (split_array)

Divides one array reference into two at an index.

The first will contain all indices from [0, M) (excluding the index M itself) and the second will contain all indices from [M, N) (excluding the index N itself).

§Panics

Panics if M > N.

§Examples
#![feature(split_array)]

let v = [1, 2, 3, 4, 5, 6];

{
   let (left, right) = v.split_array_ref::<0>();
   assert_eq!(left, &[]);
   assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
}

{
    let (left, right) = v.split_array_ref::<2>();
    assert_eq!(left, &[1, 2]);
    assert_eq!(right, &[3, 4, 5, 6]);
}

{
    let (left, right) = v.split_array_ref::<6>();
    assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
    assert_eq!(right, &[]);
}
source

pub fn split_array_mut<const M: usize>(&mut self) -> (&mut [T; M], &mut [T])

🔬This is a nightly-only experimental API. (split_array)

Divides one mutable array reference into two at an index.

The first will contain all indices from [0, M) (excluding the index M itself) and the second will contain all indices from [M, N) (excluding the index N itself).

§Panics

Panics if M > N.

§Examples
#![feature(split_array)]

let mut v = [1, 0, 3, 0, 5, 6];
let (left, right) = v.split_array_mut::<2>();
assert_eq!(left, &mut [1, 0][..]);
assert_eq!(right, &mut [3, 0, 5, 6]);
left[1] = 2;
right[1] = 4;
assert_eq!(v, [1, 2, 3, 4, 5, 6]);
source

pub fn rsplit_array_ref<const M: usize>(&self) -> (&[T], &[T; M])

🔬This is a nightly-only experimental API. (split_array)

Divides one array reference into two at an index from the end.

The first will contain all indices from [0, N - M) (excluding the index N - M itself) and the second will contain all indices from [N - M, N) (excluding the index N itself).

§Panics

Panics if M > N.

§Examples
#![feature(split_array)]

let v = [1, 2, 3, 4, 5, 6];

{
   let (left, right) = v.rsplit_array_ref::<0>();
   assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
   assert_eq!(right, &[]);
}

{
    let (left, right) = v.rsplit_array_ref::<2>();
    assert_eq!(left, &[1, 2, 3, 4]);
    assert_eq!(right, &[5, 6]);
}

{
    let (left, right) = v.rsplit_array_ref::<6>();
    assert_eq!(left, &[]);
    assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
}
source

pub fn rsplit_array_mut<const M: usize>(&mut self) -> (&mut [T], &mut [T; M])

🔬This is a nightly-only experimental API. (split_array)

Divides one mutable array reference into two at an index from the end.

The first will contain all indices from [0, N - M) (excluding the index N - M itself) and the second will contain all indices from [N - M, N) (excluding the index N itself).

§Panics

Panics if M > N.

§Examples
#![feature(split_array)]

let mut v = [1, 0, 3, 0, 5, 6];
let (left, right) = v.rsplit_array_mut::<4>();
assert_eq!(left, &mut [1, 0]);
assert_eq!(right, &mut [3, 0, 5, 6][..]);
left[1] = 2;
right[1] = 4;
assert_eq!(v, [1, 2, 3, 4, 5, 6]);

Trait Implementations§

source§

impl Add<&VecN<f64, 4>> for &Mat

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the + operator.
source§

fn add(self, rhs: &Scalar) -> Self::Output

Performs the + operation. Read more
source§

impl Add<&VecN<f64, 4>> for &MatExpr

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the + operator.
source§

fn add(self, rhs: &Scalar) -> Self::Output

Performs the + operation. Read more
source§

impl Add<&VecN<f64, 4>> for Mat

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the + operator.
source§

fn add(self, rhs: &Scalar) -> Self::Output

Performs the + operation. Read more
source§

impl Add<&VecN<f64, 4>> for MatExpr

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the + operator.
source§

fn add(self, rhs: &Scalar) -> Self::Output

Performs the + operation. Read more
source§

impl Add<&VecN<f64, 4>> for MatExprResult<&Mat>

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the + operator.
source§

fn add(self, rhs: &Scalar) -> Self::Output

Performs the + operation. Read more
source§

impl Add<&VecN<f64, 4>> for MatExprResult<&MatExpr>

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the + operator.
source§

fn add(self, rhs: &Scalar) -> Self::Output

Performs the + operation. Read more
source§

impl Add<&VecN<f64, 4>> for MatExprResult<Mat>

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the + operator.
source§

fn add(self, rhs: &Scalar) -> Self::Output

Performs the + operation. Read more
source§

impl Add<&VecN<f64, 4>> for MatExprResult<MatExpr>

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the + operator.
source§

fn add(self, rhs: &Scalar) -> Self::Output

Performs the + operation. Read more
source§

impl Add<VecN<f64, 4>> for &Mat

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the + operator.
source§

fn add(self, rhs: Scalar) -> Self::Output

Performs the + operation. Read more
source§

impl Add<VecN<f64, 4>> for &MatExpr

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the + operator.
source§

fn add(self, rhs: Scalar) -> Self::Output

Performs the + operation. Read more
source§

impl Add<VecN<f64, 4>> for Mat

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the + operator.
source§

fn add(self, rhs: Scalar) -> Self::Output

Performs the + operation. Read more
source§

impl Add<VecN<f64, 4>> for MatExpr

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the + operator.
source§

fn add(self, rhs: Scalar) -> Self::Output

Performs the + operation. Read more
source§

impl Add<VecN<f64, 4>> for MatExprResult<&Mat>

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the + operator.
source§

fn add(self, rhs: Scalar) -> Self::Output

Performs the + operation. Read more
source§

impl Add<VecN<f64, 4>> for MatExprResult<&MatExpr>

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the + operator.
source§

fn add(self, rhs: Scalar) -> Self::Output

Performs the + operation. Read more
source§

impl Add<VecN<f64, 4>> for MatExprResult<Mat>

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the + operator.
source§

fn add(self, rhs: Scalar) -> Self::Output

Performs the + operation. Read more
source§

impl Add<VecN<f64, 4>> for MatExprResult<MatExpr>

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the + operator.
source§

fn add(self, rhs: Scalar) -> Self::Output

Performs the + operation. Read more
source§

impl<T: Add<Output = T> + Copy, const N: usize> Add for VecN<T, N>

§

type Output = VecN<T, N>

The resulting type after applying the + operator.
source§

fn add(self, rhs: Self) -> Self::Output

Performs the + operation. Read more
source§

impl<T: AddAssign, const N: usize> AddAssign for VecN<T, N>

source§

fn add_assign(&mut self, rhs: Self)

Performs the += operation. Read more
source§

impl<T: Clone, const N: usize> Clone for VecN<T, N>

source§

fn clone(&self) -> VecN<T, N>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<T: DataType, const N: usize> DataType for VecN<T, N>

source§

fn opencv_depth() -> i32

The shape of bytes occupied by the single layer/channel of the element. E.g. for an 8-bit BGR image it’s CV_8U because a single channel for a pixel is unsigned 8 bits. You should use one of the depth constants for this like CV_8U, CV_8S, CV_32F, etc.
source§

fn opencv_channels() -> i32

Amount of layers/channels per element. E.g. for an 8-bit BGR image it’s 3 because one pixel consists of 3 channels: B, G and R.
source§

fn opencv_type() -> i32

OpenCV value for this type as produced by CV_MAKETYPE() function
source§

impl<T: Debug, const N: usize> Debug for VecN<T, N>

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<T, const N: usize> Default for VecN<T, N>
where [T; N]: Default,

source§

fn default() -> Self

Returns the “default value” for a type. Read more
source§

impl<T, const N: usize> Deref for VecN<T, N>

§

type Target = [T; N]

The resulting type after dereferencing.
source§

fn deref(&self) -> &Self::Target

Dereferences the value.
source§

impl<T, const N: usize> DerefMut for VecN<T, N>

source§

fn deref_mut(&mut self) -> &mut Self::Target

Mutably dereferences the value.
source§

impl<Rhs: Copy, T: Div<Rhs, Output = T> + Copy, const N: usize> Div<Rhs> for VecN<T, N>

§

type Output = VecN<T, N>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Rhs) -> Self::Output

Performs the / operation. Read more
source§

impl<Rhs: Copy, T: DivAssign<Rhs>, const N: usize> DivAssign<Rhs> for VecN<T, N>

source§

fn div_assign(&mut self, rhs: Rhs)

Performs the /= operation. Read more
source§

impl<T, const N: usize> From<[T; N]> for VecN<T, N>

source§

fn from(s: [T; N]) -> Self

Converts to this type from the input type.
source§

impl<T> From<VecN<T, 2>> for Point_<T>

source§

fn from(s: VecN<T, 2>) -> Self

Converts to this type from the input type.
source§

impl<T> From<VecN<T, 3>> for Point3_<T>

source§

fn from(s: VecN<T, 3>) -> Self

Converts to this type from the input type.
source§

impl From<VecN<u8, 3>> for Scalar_<f64>

source§

fn from(v: VecN<u8, 3>) -> Self

Converts to this type from the input type.
source§

impl<T, const N: usize> IntoIterator for VecN<T, N>

§

type Item = T

The type of the elements being iterated over.
§

type IntoIter = IntoIter<T, N>

Which kind of iterator are we turning this into?
source§

fn into_iter(self) -> IntoIter<T, N>

Creates an iterator from a value. Read more
source§

impl<Rhs: Num + Copy, T: Mul<Rhs, Output = T> + Copy, const N: usize> Mul<Rhs> for VecN<T, N>

§

type Output = VecN<T, N>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Rhs) -> Self::Output

Performs the * operation. Read more
source§

impl<T: Mul<Output = T> + Sub<Output = T> + Add<Output = T> + Copy> Mul for VecN<T, 4>

§

type Output = VecN<T, 4>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Self) -> Self::Output

Performs the * operation. Read more
source§

impl<Rhs: Num + Copy, T: MulAssign<Rhs>, const N: usize> MulAssign<Rhs> for VecN<T, N>

source§

fn mul_assign(&mut self, rhs: Rhs)

Performs the *= operation. Read more
source§

impl<T: Mul<Output = T> + Sub<Output = T> + Add<Output = T> + Copy> MulAssign for VecN<T, 4>

source§

fn mul_assign(&mut self, rhs: Self)

Performs the *= operation. Read more
source§

impl<T: Neg<Output = T> + Copy, const N: usize> Neg for VecN<T, N>

§

type Output = VecN<T, N>

The resulting type after applying the - operator.
source§

fn neg(self) -> Self::Output

Performs the unary - operation. Read more
source§

impl<T: PartialEq, const N: usize> PartialEq for VecN<T, N>

source§

fn eq(&self, other: &VecN<T, N>) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<T: PartialOrd, const N: usize> PartialOrd for VecN<T, N>

source§

fn partial_cmp(&self, other: &VecN<T, N>) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · source§

fn lt(&self, other: &Rhs) -> bool

This method tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · source§

fn le(&self, other: &Rhs) -> bool

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · source§

fn gt(&self, other: &Rhs) -> bool

This method tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · source§

fn ge(&self, other: &Rhs) -> bool

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
source§

impl Sub<&VecN<f64, 4>> for &Mat

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the - operator.
source§

fn sub(self, rhs: &Scalar) -> Self::Output

Performs the - operation. Read more
source§

impl Sub<&VecN<f64, 4>> for &MatExpr

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the - operator.
source§

fn sub(self, rhs: &Scalar) -> Self::Output

Performs the - operation. Read more
source§

impl Sub<&VecN<f64, 4>> for Mat

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the - operator.
source§

fn sub(self, rhs: &Scalar) -> Self::Output

Performs the - operation. Read more
source§

impl Sub<&VecN<f64, 4>> for MatExpr

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the - operator.
source§

fn sub(self, rhs: &Scalar) -> Self::Output

Performs the - operation. Read more
source§

impl Sub<&VecN<f64, 4>> for MatExprResult<&Mat>

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the - operator.
source§

fn sub(self, rhs: &Scalar) -> Self::Output

Performs the - operation. Read more
source§

impl Sub<&VecN<f64, 4>> for MatExprResult<&MatExpr>

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the - operator.
source§

fn sub(self, rhs: &Scalar) -> Self::Output

Performs the - operation. Read more
source§

impl Sub<&VecN<f64, 4>> for MatExprResult<Mat>

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the - operator.
source§

fn sub(self, rhs: &Scalar) -> Self::Output

Performs the - operation. Read more
source§

impl Sub<&VecN<f64, 4>> for MatExprResult<MatExpr>

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the - operator.
source§

fn sub(self, rhs: &Scalar) -> Self::Output

Performs the - operation. Read more
source§

impl Sub<VecN<f64, 4>> for &Mat

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the - operator.
source§

fn sub(self, rhs: Scalar) -> Self::Output

Performs the - operation. Read more
source§

impl Sub<VecN<f64, 4>> for &MatExpr

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the - operator.
source§

fn sub(self, rhs: Scalar) -> Self::Output

Performs the - operation. Read more
source§

impl Sub<VecN<f64, 4>> for Mat

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the - operator.
source§

fn sub(self, rhs: Scalar) -> Self::Output

Performs the - operation. Read more
source§

impl Sub<VecN<f64, 4>> for MatExpr

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the - operator.
source§

fn sub(self, rhs: Scalar) -> Self::Output

Performs the - operation. Read more
source§

impl Sub<VecN<f64, 4>> for MatExprResult<&Mat>

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the - operator.
source§

fn sub(self, rhs: Scalar) -> Self::Output

Performs the - operation. Read more
source§

impl Sub<VecN<f64, 4>> for MatExprResult<&MatExpr>

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the - operator.
source§

fn sub(self, rhs: Scalar) -> Self::Output

Performs the - operation. Read more
source§

impl Sub<VecN<f64, 4>> for MatExprResult<Mat>

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the - operator.
source§

fn sub(self, rhs: Scalar) -> Self::Output

Performs the - operation. Read more
source§

impl Sub<VecN<f64, 4>> for MatExprResult<MatExpr>

§

type Output = MatExprResult<MatExpr>

The resulting type after applying the - operator.
source§

fn sub(self, rhs: Scalar) -> Self::Output

Performs the - operation. Read more
source§

impl<T: Sub<Output = T> + Copy, const N: usize> Sub for VecN<T, N>

§

type Output = VecN<T, N>

The resulting type after applying the - operator.
source§

fn sub(self, rhs: Self) -> Self::Output

Performs the - operation. Read more
source§

impl<T: SubAssign, const N: usize> SubAssign for VecN<T, N>

source§

fn sub_assign(&mut self, rhs: Self)

Performs the -= operation. Read more
source§

impl<T, const N: usize> ToInputArray for &VecN<T, N>
where VecN<T, N>: VecExtern,

source§

impl<T, const N: usize> ToInputArray for VecN<T, N>
where Self: VecExtern,

source§

impl<T, const N: usize> ToInputOutputArray for &mut VecN<T, N>
where VecN<T, N>: VecExtern,

source§

impl<T, const N: usize> ToInputOutputArray for VecN<T, N>
where Self: VecExtern,

source§

impl<T, const N: usize> ToOutputArray for &mut VecN<T, N>
where VecN<T, N>: VecExtern,

source§

impl<T, const N: usize> ToOutputArray for VecN<T, N>
where Self: VecExtern,

source§

impl<T: Copy, const N: usize> Copy for VecN<T, N>

source§

impl<T: Eq, const N: usize> Eq for VecN<T, N>

source§

impl<T, const N: usize> StructuralPartialEq for VecN<T, N>

Auto Trait Implementations§

§

impl<T, const N: usize> Freeze for VecN<T, N>
where T: Freeze,

§

impl<T, const N: usize> RefUnwindSafe for VecN<T, N>
where T: RefUnwindSafe,

§

impl<T, const N: usize> Send for VecN<T, N>
where T: Send,

§

impl<T, const N: usize> Sync for VecN<T, N>
where T: Sync,

§

impl<T, const N: usize> Unpin for VecN<T, N>
where T: Unpin,

§

impl<T, const N: usize> UnwindSafe for VecN<T, N>
where T: UnwindSafe,

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.