1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
//! # 2D Features Framework
//! # Feature Detection and Description
//! # Descriptor Matchers
//!
//! Matchers of keypoint descriptors in OpenCV have wrappers with a common interface that enables you to
//! easily switch between different algorithms solving the same problem. This section is devoted to
//! matching descriptors that are represented as vectors in a multidimensional space. All objects that
//! implement vector descriptor matchers inherit the DescriptorMatcher interface.
//!
//!
//! Note:
//! *   An example explaining keypoint matching can be found at
//! opencv_source_code/samples/cpp/descriptor_extractor_matcher.cpp
//! *   An example on descriptor matching evaluation can be found at
//! opencv_source_code/samples/cpp/detector_descriptor_matcher_evaluation.cpp
//! *   An example on one to many image matching can be found at
//! opencv_source_code/samples/cpp/matching_to_many_images.cpp
//!
//! # Drawing Function of Keypoints and Matches
//! # Object Categorization
//!
//! This section describes approaches based on local 2D features and used to categorize objects.
//!
//!
//! Note:
//! *   A complete Bag-Of-Words sample can be found at
//! opencv_source_code/samples/cpp/bagofwords_classification.cpp
//! *   (Python) An example using the features2D framework to perform object categorization can be
//! found at opencv_source_code/samples/python/find_obj.py
//!
//! # Hardware Acceleration Layer
//! # Interface
use std::os::raw::{c_char, c_void};
use libc::{ptrdiff_t, size_t};
use crate::{Error, Result, core, sys, types};
use crate::core::{_InputArrayTrait, _OutputArrayTrait};

pub const AKAZE_DESCRIPTOR_KAZE: i32 = 3;
pub const AKAZE_DESCRIPTOR_KAZE_UPRIGHT: i32 = 2;
pub const AKAZE_DESCRIPTOR_MLDB: i32 = 5;
pub const AKAZE_DESCRIPTOR_MLDB_UPRIGHT: i32 = 4;
pub const AgastFeatureDetector_AGAST_5_8: i32 = 0;
pub const AgastFeatureDetector_AGAST_7_12d: i32 = 1;
pub const AgastFeatureDetector_AGAST_7_12s: i32 = 2;
pub const AgastFeatureDetector_OAST_9_16: i32 = 3;
pub const CV_HAL_TYPE_5_8: i32 = 0;
pub const CV_HAL_TYPE_7_12: i32 = 1;
pub const CV_HAL_TYPE_9_16: i32 = 2;
pub const DescriptorMatcher_BRUTEFORCE: i32 = 2;
pub const DescriptorMatcher_BRUTEFORCE_HAMMING: i32 = 4;
pub const DescriptorMatcher_BRUTEFORCE_HAMMINGLUT: i32 = 5;
pub const DescriptorMatcher_BRUTEFORCE_L1: i32 = 3;
pub const DescriptorMatcher_BRUTEFORCE_SL2: i32 = 6;
pub const DescriptorMatcher_FLANNBASED: i32 = 1;
/// Output image matrix will be created (Mat::create),
pub const DrawMatchesFlags_DEFAULT: i32 = 0;
/// Output image matrix will not be created (Mat::create).
pub const DrawMatchesFlags_DRAW_OVER_OUTIMG: i32 = 1;
/// For each keypoint the circle around keypoint with keypoint size and
pub const DrawMatchesFlags_DRAW_RICH_KEYPOINTS: i32 = 4;
/// Single keypoints will not be drawn.
pub const DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS: i32 = 2;
pub const FastFeatureDetector_FAST_N: i32 = 10002;
pub const FastFeatureDetector_NONMAX_SUPPRESSION: i32 = 10001;
pub const FastFeatureDetector_THRESHOLD: i32 = 10000;
pub const FastFeatureDetector_TYPE_5_8: i32 = 0;
pub const FastFeatureDetector_TYPE_7_12: i32 = 1;
pub const FastFeatureDetector_TYPE_9_16: i32 = 2;
pub const KAZE_DIFF_CHARBONNIER: i32 = 3;
pub const KAZE_DIFF_PM_G1: i32 = 0;
pub const KAZE_DIFF_PM_G2: i32 = 1;
pub const KAZE_DIFF_WEICKERT: i32 = 2;
pub const ORB_FAST_SCORE: i32 = 1;
pub const ORB_HARRIS_SCORE: i32 = 0;
pub const ORB_kBytes: i32 = 32;


#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct SimpleBlobDetector_Params {
    pub threshold_step: f32,
    pub min_threshold: f32,
    pub max_threshold: f32,
    pub min_repeatability: size_t,
    pub min_dist_between_blobs: f32,
    pub filter_by_color: bool,
    pub blob_color: u8,
    pub filter_by_area: bool,
    pub min_area: f32,
    pub max_area: f32,
    pub filter_by_circularity: bool,
    pub min_circularity: f32,
    pub max_circularity: f32,
    pub filter_by_inertia: bool,
    pub min_inertia_ratio: f32,
    pub max_inertia_ratio: f32,
    pub filter_by_convexity: bool,
    pub min_convexity: f32,
    pub max_convexity: f32,
}

/// Detects corners using the AGAST algorithm
///
/// ## Parameters
/// * image: grayscale image where keypoints (corners) are detected.
/// * keypoints: keypoints detected on the image.
/// * threshold: threshold on difference between intensity of the central pixel and pixels of a
/// circle around this pixel.
/// * nonmaxSuppression: if true, non-maximum suppression is applied to detected corners
/// (keypoints).
/// * type: one of the four neighborhoods as defined in the paper:
/// AgastFeatureDetector::AGAST_5_8, AgastFeatureDetector::AGAST_7_12d,
/// AgastFeatureDetector::AGAST_7_12s, AgastFeatureDetector::OAST_9_16
///
/// For non-Intel platforms, there is a tree optimised variant of AGAST with same numerical results.
/// The 32-bit binary tree tables were generated automatically from original code using perl script.
/// The perl script and examples of tree generation are placed in features2d/doc folder.
/// Detects corners using the AGAST algorithm by [mair2010_agast](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_mair2010_agast) .
///
/// ## Overloaded parameters
///
/// ## C++ default parameters
/// * nonmax_suppression: true
pub fn AGAST(image: &dyn core::ToInputArray, keypoints: &mut types::VectorOfKeyPoint, threshold: i32, nonmax_suppression: bool) -> Result<()> {
    input_array_arg!(image);
    unsafe { sys::cv_AGAST__InputArray_VectorOfKeyPoint_int_bool(image.as_raw__InputArray(), keypoints.as_raw_VectorOfKeyPoint(), threshold, nonmax_suppression) }.into_result()
}

/// Detects corners using the AGAST algorithm
///
/// ## Parameters
/// * image: grayscale image where keypoints (corners) are detected.
/// * keypoints: keypoints detected on the image.
/// * threshold: threshold on difference between intensity of the central pixel and pixels of a
/// circle around this pixel.
/// * nonmaxSuppression: if true, non-maximum suppression is applied to detected corners
/// (keypoints).
/// * type: one of the four neighborhoods as defined in the paper:
/// AgastFeatureDetector::AGAST_5_8, AgastFeatureDetector::AGAST_7_12d,
/// AgastFeatureDetector::AGAST_7_12s, AgastFeatureDetector::OAST_9_16
///
/// For non-Intel platforms, there is a tree optimised variant of AGAST with same numerical results.
/// The 32-bit binary tree tables were generated automatically from original code using perl script.
/// The perl script and examples of tree generation are placed in features2d/doc folder.
/// Detects corners using the AGAST algorithm by [mair2010_agast](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_mair2010_agast) .
pub fn AGAST_with_type(image: &dyn core::ToInputArray, keypoints: &mut types::VectorOfKeyPoint, threshold: i32, nonmax_suppression: bool, _type: i32) -> Result<()> {
    input_array_arg!(image);
    unsafe { sys::cv_AGAST__InputArray_VectorOfKeyPoint_int_bool_int(image.as_raw__InputArray(), keypoints.as_raw_VectorOfKeyPoint(), threshold, nonmax_suppression, _type) }.into_result()
}

/// Detects corners using the FAST algorithm
///
/// ## Parameters
/// * image: grayscale image where keypoints (corners) are detected.
/// * keypoints: keypoints detected on the image.
/// * threshold: threshold on difference between intensity of the central pixel and pixels of a
/// circle around this pixel.
/// * nonmaxSuppression: if true, non-maximum suppression is applied to detected corners
/// (keypoints).
/// * type: one of the three neighborhoods as defined in the paper:
/// FastFeatureDetector::TYPE_9_16, FastFeatureDetector::TYPE_7_12,
/// FastFeatureDetector::TYPE_5_8
///
/// Detects corners using the FAST algorithm by [Rosten06](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_Rosten06) .
///
///
/// Note: In Python API, types are given as cv2.FAST_FEATURE_DETECTOR_TYPE_5_8,
/// cv2.FAST_FEATURE_DETECTOR_TYPE_7_12 and cv2.FAST_FEATURE_DETECTOR_TYPE_9_16. For corner
/// detection, use cv2.FAST.detect() method.
///
/// ## Overloaded parameters
///
/// ## C++ default parameters
/// * nonmax_suppression: true
pub fn FAST(image: &dyn core::ToInputArray, keypoints: &mut types::VectorOfKeyPoint, threshold: i32, nonmax_suppression: bool) -> Result<()> {
    input_array_arg!(image);
    unsafe { sys::cv_FAST__InputArray_VectorOfKeyPoint_int_bool(image.as_raw__InputArray(), keypoints.as_raw_VectorOfKeyPoint(), threshold, nonmax_suppression) }.into_result()
}

/// Detects corners using the FAST algorithm
///
/// ## Parameters
/// * image: grayscale image where keypoints (corners) are detected.
/// * keypoints: keypoints detected on the image.
/// * threshold: threshold on difference between intensity of the central pixel and pixels of a
/// circle around this pixel.
/// * nonmaxSuppression: if true, non-maximum suppression is applied to detected corners
/// (keypoints).
/// * type: one of the three neighborhoods as defined in the paper:
/// FastFeatureDetector::TYPE_9_16, FastFeatureDetector::TYPE_7_12,
/// FastFeatureDetector::TYPE_5_8
///
/// Detects corners using the FAST algorithm by [Rosten06](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_Rosten06) .
///
///
/// Note: In Python API, types are given as cv2.FAST_FEATURE_DETECTOR_TYPE_5_8,
/// cv2.FAST_FEATURE_DETECTOR_TYPE_7_12 and cv2.FAST_FEATURE_DETECTOR_TYPE_9_16. For corner
/// detection, use cv2.FAST.detect() method.
pub fn FAST_with_type(image: &dyn core::ToInputArray, keypoints: &mut types::VectorOfKeyPoint, threshold: i32, nonmax_suppression: bool, _type: i32) -> Result<()> {
    input_array_arg!(image);
    unsafe { sys::cv_FAST__InputArray_VectorOfKeyPoint_int_bool_int(image.as_raw__InputArray(), keypoints.as_raw_VectorOfKeyPoint(), threshold, nonmax_suppression, _type) }.into_result()
}

pub fn compute_recall_precision_curve(matches1to2: &types::VectorOfVectorOfDMatch, correct_matches1to2_mask: &types::VectorOfVectorOfuchar, recall_precision_curve: &mut types::VectorOfPoint2f) -> Result<()> {
    unsafe { sys::cv_computeRecallPrecisionCurve_VectorOfVectorOfDMatch_VectorOfVectorOfuchar_VectorOfPoint2f(matches1to2.as_raw_VectorOfVectorOfDMatch(), correct_matches1to2_mask.as_raw_VectorOfVectorOfuchar(), recall_precision_curve.as_raw_VectorOfPoint2f()) }.into_result()
}

/// Draws keypoints.
///
/// ## Parameters
/// * image: Source image.
/// * keypoints: Keypoints from the source image.
/// * outImage: Output image. Its content depends on the flags value defining what is drawn in the
/// output image. See possible flags bit values below.
/// * color: Color of keypoints.
/// * flags: Flags setting drawing features. Possible flags bit values are defined by
/// DrawMatchesFlags. See details above in drawMatches .
///
///
/// Note:
/// For Python API, flags are modified as cv2.DRAW_MATCHES_FLAGS_DEFAULT,
/// cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS, cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG,
/// cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS
///
/// ## C++ default parameters
/// * color: Scalar::all(-1)
/// * flags: DrawMatchesFlags::DEFAULT
pub fn draw_keypoints(image: &dyn core::ToInputArray, keypoints: &types::VectorOfKeyPoint, out_image: &mut dyn core::ToInputOutputArray, color: core::Scalar, flags: i32) -> Result<()> {
    input_array_arg!(image);
    input_output_array_arg!(out_image);
    unsafe { sys::cv_drawKeypoints__InputArray_VectorOfKeyPoint__InputOutputArray_Scalar_int(image.as_raw__InputArray(), keypoints.as_raw_VectorOfKeyPoint(), out_image.as_raw__InputOutputArray(), color, flags) }.into_result()
}

/// Draws the found matches of keypoints from two images.
///
/// ## Parameters
/// * img1: First source image.
/// * keypoints1: Keypoints from the first source image.
/// * img2: Second source image.
/// * keypoints2: Keypoints from the second source image.
/// * matches1to2: Matches from the first image to the second one, which means that keypoints1[i]
/// has a corresponding point in keypoints2[matches[i]] .
/// * outImg: Output image. Its content depends on the flags value defining what is drawn in the
/// output image. See possible flags bit values below.
/// * matchColor: Color of matches (lines and connected keypoints). If matchColor==Scalar::all(-1)
/// , the color is generated randomly.
/// * singlePointColor: Color of single keypoints (circles), which means that keypoints do not
/// have the matches. If singlePointColor==Scalar::all(-1) , the color is generated randomly.
/// * matchesMask: Mask determining which matches are drawn. If the mask is empty, all matches are
/// drawn.
/// * flags: Flags setting drawing features. Possible flags bit values are defined by
/// DrawMatchesFlags.
///
/// This function draws matches of keypoints from two images in the output image. Match is a line
/// connecting two keypoints (circles). See cv::DrawMatchesFlags.
///
/// ## C++ default parameters
/// * match_color: Scalar::all(-1)
/// * single_point_color: Scalar::all(-1)
/// * matches_mask: std::vector<char>()
/// * flags: DrawMatchesFlags::DEFAULT
pub fn draw_matches(img1: &dyn core::ToInputArray, keypoints1: &types::VectorOfKeyPoint, img2: &dyn core::ToInputArray, keypoints2: &types::VectorOfKeyPoint, matches1to2: &types::VectorOfDMatch, out_img: &mut dyn core::ToInputOutputArray, match_color: core::Scalar, single_point_color: core::Scalar, matches_mask: &types::VectorOfchar, flags: i32) -> Result<()> {
    input_array_arg!(img1);
    input_array_arg!(img2);
    input_output_array_arg!(out_img);
    unsafe { sys::cv_drawMatches__InputArray_VectorOfKeyPoint__InputArray_VectorOfKeyPoint_VectorOfDMatch__InputOutputArray_Scalar_Scalar_VectorOfchar_int(img1.as_raw__InputArray(), keypoints1.as_raw_VectorOfKeyPoint(), img2.as_raw__InputArray(), keypoints2.as_raw_VectorOfKeyPoint(), matches1to2.as_raw_VectorOfDMatch(), out_img.as_raw__InputOutputArray(), match_color, single_point_color, matches_mask.as_raw_VectorOfchar(), flags) }.into_result()
}

/// Draws the found matches of keypoints from two images.
///
/// ## Parameters
/// * img1: First source image.
/// * keypoints1: Keypoints from the first source image.
/// * img2: Second source image.
/// * keypoints2: Keypoints from the second source image.
/// * matches1to2: Matches from the first image to the second one, which means that keypoints1[i]
/// has a corresponding point in keypoints2[matches[i]] .
/// * outImg: Output image. Its content depends on the flags value defining what is drawn in the
/// output image. See possible flags bit values below.
/// * matchColor: Color of matches (lines and connected keypoints). If matchColor==Scalar::all(-1)
/// , the color is generated randomly.
/// * singlePointColor: Color of single keypoints (circles), which means that keypoints do not
/// have the matches. If singlePointColor==Scalar::all(-1) , the color is generated randomly.
/// * matchesMask: Mask determining which matches are drawn. If the mask is empty, all matches are
/// drawn.
/// * flags: Flags setting drawing features. Possible flags bit values are defined by
/// DrawMatchesFlags.
///
/// This function draws matches of keypoints from two images in the output image. Match is a line
/// connecting two keypoints (circles). See cv::DrawMatchesFlags.
///
/// ## Overloaded parameters
///
/// ## C++ default parameters
/// * match_color: Scalar::all(-1)
/// * single_point_color: Scalar::all(-1)
/// * matches_mask: std::vector<std::vector<char> >()
/// * flags: DrawMatchesFlags::DEFAULT
pub fn draw_matches_vec(img1: &dyn core::ToInputArray, keypoints1: &types::VectorOfKeyPoint, img2: &dyn core::ToInputArray, keypoints2: &types::VectorOfKeyPoint, matches1to2: &types::VectorOfVectorOfDMatch, out_img: &mut dyn core::ToInputOutputArray, match_color: core::Scalar, single_point_color: core::Scalar, matches_mask: &types::VectorOfVectorOfchar, flags: i32) -> Result<()> {
    input_array_arg!(img1);
    input_array_arg!(img2);
    input_output_array_arg!(out_img);
    unsafe { sys::cv_drawMatches__InputArray_VectorOfKeyPoint__InputArray_VectorOfKeyPoint_VectorOfVectorOfDMatch__InputOutputArray_Scalar_Scalar_VectorOfVectorOfchar_int(img1.as_raw__InputArray(), keypoints1.as_raw_VectorOfKeyPoint(), img2.as_raw__InputArray(), keypoints2.as_raw_VectorOfKeyPoint(), matches1to2.as_raw_VectorOfVectorOfDMatch(), out_img.as_raw__InputOutputArray(), match_color, single_point_color, matches_mask.as_raw_VectorOfVectorOfchar(), flags) }.into_result()
}

/// \
///   Functions to evaluate the feature detectors and [generic] descriptor extractors      *
///
/// ## C++ default parameters
/// * fdetector: Ptr<FeatureDetector>()
pub fn evaluate_feature_detector(img1: &core::Mat, img2: &core::Mat, h1to2: &core::Mat, keypoints1: &mut types::VectorOfKeyPoint, keypoints2: &mut types::VectorOfKeyPoint, repeatability: &mut f32, corresp_count: &mut i32, fdetector: &types::PtrOfFeature2D) -> Result<()> {
    unsafe { sys::cv_evaluateFeatureDetector_Mat_Mat_Mat_VectorOfKeyPoint_VectorOfKeyPoint_float_int_PtrOfFeature2D(img1.as_raw_Mat(), img2.as_raw_Mat(), h1to2.as_raw_Mat(), keypoints1.as_raw_VectorOfKeyPoint(), keypoints2.as_raw_VectorOfKeyPoint(), repeatability, corresp_count, fdetector.as_raw_PtrOfFeature2D()) }.into_result()
}

pub fn get_nearest_point(recall_precision_curve: &types::VectorOfPoint2f, l_precision: f32) -> Result<i32> {
    unsafe { sys::cv_getNearestPoint_VectorOfPoint2f_float(recall_precision_curve.as_raw_VectorOfPoint2f(), l_precision) }.into_result()
}

pub fn get_recall(recall_precision_curve: &types::VectorOfPoint2f, l_precision: f32) -> Result<f32> {
    unsafe { sys::cv_getRecall_VectorOfPoint2f_float(recall_precision_curve.as_raw_VectorOfPoint2f(), l_precision) }.into_result()
}

// Generating impl for trait crate::features2d::AKAZE
/// Class implementing the AKAZE keypoint detector and descriptor extractor, described in [ANB13](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_ANB13).
///
/// @details AKAZE descriptors can only be used with KAZE or AKAZE keypoints. This class is thread-safe.
///
///
/// Note: When you need descriptors use Feature2D::detectAndCompute, which
/// provides better performance. When using Feature2D::detect followed by
/// Feature2D::compute scale space pyramid is computed twice.
///
///
/// Note: AKAZE implements T-API. When image is passed as UMat some parts of the algorithm
/// will use OpenCL.
///
///
/// Note: [ANB13] Fast Explicit Diffusion for Accelerated Features in Nonlinear
/// Scale Spaces. Pablo F. Alcantarilla, Jesús Nuevo and Adrien Bartoli. In
/// British Machine Vision Conference (BMVC), Bristol, UK, September 2013.
pub trait AKAZE: crate::features2d::Feature2DTrait {
    #[inline(always)] fn as_raw_AKAZE(&self) -> *mut c_void;
    fn set_descriptor_type(&mut self, dtype: i32) -> Result<()> {
        unsafe { sys::cv_AKAZE_setDescriptorType_int(self.as_raw_AKAZE(), dtype) }.into_result()
    }
    
    fn get_descriptor_type(&self) -> Result<i32> {
        unsafe { sys::cv_AKAZE_getDescriptorType_const(self.as_raw_AKAZE()) }.into_result()
    }
    
    fn set_descriptor_size(&mut self, dsize: i32) -> Result<()> {
        unsafe { sys::cv_AKAZE_setDescriptorSize_int(self.as_raw_AKAZE(), dsize) }.into_result()
    }
    
    fn get_descriptor_size(&self) -> Result<i32> {
        unsafe { sys::cv_AKAZE_getDescriptorSize_const(self.as_raw_AKAZE()) }.into_result()
    }
    
    fn set_descriptor_channels(&mut self, dch: i32) -> Result<()> {
        unsafe { sys::cv_AKAZE_setDescriptorChannels_int(self.as_raw_AKAZE(), dch) }.into_result()
    }
    
    fn get_descriptor_channels(&self) -> Result<i32> {
        unsafe { sys::cv_AKAZE_getDescriptorChannels_const(self.as_raw_AKAZE()) }.into_result()
    }
    
    fn set_threshold(&mut self, threshold: f64) -> Result<()> {
        unsafe { sys::cv_AKAZE_setThreshold_double(self.as_raw_AKAZE(), threshold) }.into_result()
    }
    
    fn get_threshold(&self) -> Result<f64> {
        unsafe { sys::cv_AKAZE_getThreshold_const(self.as_raw_AKAZE()) }.into_result()
    }
    
    fn set_n_octaves(&mut self, octaves: i32) -> Result<()> {
        unsafe { sys::cv_AKAZE_setNOctaves_int(self.as_raw_AKAZE(), octaves) }.into_result()
    }
    
    fn get_n_octaves(&self) -> Result<i32> {
        unsafe { sys::cv_AKAZE_getNOctaves_const(self.as_raw_AKAZE()) }.into_result()
    }
    
    fn set_n_octave_layers(&mut self, octave_layers: i32) -> Result<()> {
        unsafe { sys::cv_AKAZE_setNOctaveLayers_int(self.as_raw_AKAZE(), octave_layers) }.into_result()
    }
    
    fn get_n_octave_layers(&self) -> Result<i32> {
        unsafe { sys::cv_AKAZE_getNOctaveLayers_const(self.as_raw_AKAZE()) }.into_result()
    }
    
    fn set_diffusivity(&mut self, diff: i32) -> Result<()> {
        unsafe { sys::cv_AKAZE_setDiffusivity_int(self.as_raw_AKAZE(), diff) }.into_result()
    }
    
    fn get_diffusivity(&self) -> Result<i32> {
        unsafe { sys::cv_AKAZE_getDiffusivity_const(self.as_raw_AKAZE()) }.into_result()
    }
    
    fn get_default_name(&self) -> Result<String> {
        unsafe { sys::cv_AKAZE_getDefaultName_const(self.as_raw_AKAZE()) }.into_result().map(crate::templ::receive_string_mut)
    }
    
}

impl dyn AKAZE + '_ {
    /// The AKAZE constructor
    ///
    /// ## Parameters
    /// * descriptor_type: Type of the extracted descriptor: DESCRIPTOR_KAZE,
    /// DESCRIPTOR_KAZE_UPRIGHT, DESCRIPTOR_MLDB or DESCRIPTOR_MLDB_UPRIGHT.
    /// * descriptor_size: Size of the descriptor in bits. 0 -\> Full size
    /// * descriptor_channels: Number of channels in the descriptor (1, 2, 3)
    /// * threshold: Detector response threshold to accept point
    /// * nOctaves: Maximum octave evolution of the image
    /// * nOctaveLayers: Default number of sublevels per scale level
    /// * diffusivity: Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or
    /// DIFF_CHARBONNIER
    ///
    /// ## C++ default parameters
    /// * descriptor_type: AKAZE::DESCRIPTOR_MLDB
    /// * descriptor_size: 0
    /// * descriptor_channels: 3
    /// * threshold: 0.001f
    /// * n_octaves: 4
    /// * n_octave_layers: 4
    /// * diffusivity: KAZE::DIFF_PM_G2
    pub fn create(descriptor_type: i32, descriptor_size: i32, descriptor_channels: i32, threshold: f32, n_octaves: i32, n_octave_layers: i32, diffusivity: i32) -> Result<types::PtrOfAKAZE> {
        unsafe { sys::cv_AKAZE_create_int_int_int_float_int_int_int(descriptor_type, descriptor_size, descriptor_channels, threshold, n_octaves, n_octave_layers, diffusivity) }.into_result().map(|ptr| types::PtrOfAKAZE { ptr })
    }
    
}

// Generating impl for trait crate::features2d::AgastFeatureDetector
/// Wrapping class for feature detection using the AGAST method. :
pub trait AgastFeatureDetector: crate::features2d::Feature2DTrait {
    #[inline(always)] fn as_raw_AgastFeatureDetector(&self) -> *mut c_void;
    fn set_threshold(&mut self, threshold: i32) -> Result<()> {
        unsafe { sys::cv_AgastFeatureDetector_setThreshold_int(self.as_raw_AgastFeatureDetector(), threshold) }.into_result()
    }
    
    fn get_threshold(&self) -> Result<i32> {
        unsafe { sys::cv_AgastFeatureDetector_getThreshold_const(self.as_raw_AgastFeatureDetector()) }.into_result()
    }
    
    fn set_nonmax_suppression(&mut self, f: bool) -> Result<()> {
        unsafe { sys::cv_AgastFeatureDetector_setNonmaxSuppression_bool(self.as_raw_AgastFeatureDetector(), f) }.into_result()
    }
    
    fn get_nonmax_suppression(&self) -> Result<bool> {
        unsafe { sys::cv_AgastFeatureDetector_getNonmaxSuppression_const(self.as_raw_AgastFeatureDetector()) }.into_result()
    }
    
    fn set_type(&mut self, _type: i32) -> Result<()> {
        unsafe { sys::cv_AgastFeatureDetector_setType_int(self.as_raw_AgastFeatureDetector(), _type) }.into_result()
    }
    
    fn get_type(&self) -> Result<i32> {
        unsafe { sys::cv_AgastFeatureDetector_getType_const(self.as_raw_AgastFeatureDetector()) }.into_result()
    }
    
    fn get_default_name(&self) -> Result<String> {
        unsafe { sys::cv_AgastFeatureDetector_getDefaultName_const(self.as_raw_AgastFeatureDetector()) }.into_result().map(crate::templ::receive_string_mut)
    }
    
}

impl dyn AgastFeatureDetector + '_ {
    ///
    /// ## C++ default parameters
    /// * threshold: 10
    /// * nonmax_suppression: true
    /// * _type: AgastFeatureDetector::OAST_9_16
    pub fn create(threshold: i32, nonmax_suppression: bool, _type: i32) -> Result<types::PtrOfAgastFeatureDetector> {
        unsafe { sys::cv_AgastFeatureDetector_create_int_bool_int(threshold, nonmax_suppression, _type) }.into_result().map(|ptr| types::PtrOfAgastFeatureDetector { ptr })
    }
    
}

// boxed class cv::BFMatcher
/// Brute-force descriptor matcher.
///
/// For each descriptor in the first set, this matcher finds the closest descriptor in the second set
/// by trying each one. This descriptor matcher supports masking permissible matches of descriptor
/// sets.
pub struct BFMatcher {
    #[doc(hidden)] pub(crate) ptr: *mut c_void
}

impl Drop for BFMatcher {
    fn drop(&mut self) {
        unsafe { sys::cv_BFMatcher_delete(self.ptr) };
    }
}

impl BFMatcher {
    #[inline(always)] pub fn as_raw_BFMatcher(&self) -> *mut c_void { self.ptr }

    pub unsafe fn from_raw_ptr(ptr: *mut c_void) -> Self {
        Self { ptr }
    }
}

unsafe impl Send for BFMatcher {}

impl core::AlgorithmTrait for BFMatcher {
    #[inline(always)] fn as_raw_Algorithm(&self) -> *mut c_void { self.ptr }
}

impl crate::features2d::DescriptorMatcher for BFMatcher {
    #[inline(always)] fn as_raw_DescriptorMatcher(&self) -> *mut c_void { self.ptr }
}

impl BFMatcher {
    /// Brute-force matcher constructor (obsolete). Please use BFMatcher.create()
    ///
    /// ## C++ default parameters
    /// * norm_type: NORM_L2
    /// * cross_check: false
    pub fn new(norm_type: i32, cross_check: bool) -> Result<crate::features2d::BFMatcher> {
        unsafe { sys::cv_BFMatcher_BFMatcher_int_bool(norm_type, cross_check) }.into_result().map(|ptr| crate::features2d::BFMatcher { ptr })
    }
    
    pub fn is_mask_supported(&self) -> Result<bool> {
        unsafe { sys::cv_BFMatcher_isMaskSupported_const(self.as_raw_BFMatcher()) }.into_result()
    }
    
    /// Brute-force matcher create method.
    /// ## Parameters
    /// * normType: One of NORM_L1, NORM_L2, NORM_HAMMING, NORM_HAMMING2. L1 and L2 norms are
    /// preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and
    /// BRIEF, NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4 (see ORB::ORB constructor
    /// description).
    /// * crossCheck: If it is false, this is will be default BFMatcher behaviour when it finds the k
    /// nearest neighbors for each query descriptor. If crossCheck==true, then the knnMatch() method with
    /// k=1 will only return pairs (i,j) such that for i-th query descriptor the j-th descriptor in the
    /// matcher's collection is the nearest and vice versa, i.e. the BFMatcher will only return consistent
    /// pairs. Such technique usually produces best results with minimal number of outliers when there are
    /// enough matches. This is alternative to the ratio test, used by D. Lowe in SIFT paper.
    ///
    /// ## C++ default parameters
    /// * norm_type: NORM_L2
    /// * cross_check: false
    pub fn create(norm_type: i32, cross_check: bool) -> Result<types::PtrOfBFMatcher> {
        unsafe { sys::cv_BFMatcher_create_int_bool(norm_type, cross_check) }.into_result().map(|ptr| types::PtrOfBFMatcher { ptr })
    }
    
    ///
    /// ## C++ default parameters
    /// * empty_train_data: false
    pub fn clone(&self, empty_train_data: bool) -> Result<types::PtrOfDescriptorMatcher> {
        unsafe { sys::cv_BFMatcher_clone_const_bool(self.as_raw_BFMatcher(), empty_train_data) }.into_result().map(|ptr| types::PtrOfDescriptorMatcher { ptr })
    }
    
}

// boxed class cv::BOWImgDescriptorExtractor
/// Class to compute an image descriptor using the *bag of visual words*.
///
/// Such a computation consists of the following steps:
///
/// 1.  Compute descriptors for a given image and its keypoints set.
/// 2.  Find the nearest visual words from the vocabulary for each keypoint descriptor.
/// 3.  Compute the bag-of-words image descriptor as is a normalized histogram of vocabulary words
/// encountered in the image. The i-th bin of the histogram is a frequency of i-th word of the
/// vocabulary in the given image.
pub struct BOWImgDescriptorExtractor {
    #[doc(hidden)] pub(crate) ptr: *mut c_void
}

impl Drop for BOWImgDescriptorExtractor {
    fn drop(&mut self) {
        unsafe { sys::cv_BOWImgDescriptorExtractor_delete(self.ptr) };
    }
}

impl BOWImgDescriptorExtractor {
    #[inline(always)] pub fn as_raw_BOWImgDescriptorExtractor(&self) -> *mut c_void { self.ptr }

    pub unsafe fn from_raw_ptr(ptr: *mut c_void) -> Self {
        Self { ptr }
    }
}

unsafe impl Send for BOWImgDescriptorExtractor {}

impl BOWImgDescriptorExtractor {
    /// The constructor.
    ///
    /// ## Parameters
    /// * dextractor: Descriptor extractor that is used to compute descriptors for an input image and
    /// its keypoints.
    /// * dmatcher: Descriptor matcher that is used to find the nearest word of the trained vocabulary
    /// for each keypoint descriptor of the image.
    pub fn new_with_dextractor(dextractor: &types::PtrOfFeature2D, dmatcher: &types::PtrOfDescriptorMatcher) -> Result<crate::features2d::BOWImgDescriptorExtractor> {
        unsafe { sys::cv_BOWImgDescriptorExtractor_BOWImgDescriptorExtractor_PtrOfFeature2D_PtrOfDescriptorMatcher(dextractor.as_raw_PtrOfFeature2D(), dmatcher.as_raw_PtrOfDescriptorMatcher()) }.into_result().map(|ptr| crate::features2d::BOWImgDescriptorExtractor { ptr })
    }
    
    pub fn new(dmatcher: &types::PtrOfDescriptorMatcher) -> Result<crate::features2d::BOWImgDescriptorExtractor> {
        unsafe { sys::cv_BOWImgDescriptorExtractor_BOWImgDescriptorExtractor_PtrOfDescriptorMatcher(dmatcher.as_raw_PtrOfDescriptorMatcher()) }.into_result().map(|ptr| crate::features2d::BOWImgDescriptorExtractor { ptr })
    }
    
    /// Sets a visual vocabulary.
    ///
    /// ## Parameters
    /// * vocabulary: Vocabulary (can be trained using the inheritor of BOWTrainer ). Each row of the
    /// vocabulary is a visual word (cluster center).
    pub fn set_vocabulary(&mut self, vocabulary: &core::Mat) -> Result<()> {
        unsafe { sys::cv_BOWImgDescriptorExtractor_setVocabulary_Mat(self.as_raw_BOWImgDescriptorExtractor(), vocabulary.as_raw_Mat()) }.into_result()
    }
    
    /// Returns the set vocabulary.
    pub fn get_vocabulary(&self) -> Result<core::Mat> {
        unsafe { sys::cv_BOWImgDescriptorExtractor_getVocabulary_const(self.as_raw_BOWImgDescriptorExtractor()) }.into_result().map(|ptr| core::Mat { ptr })
    }
    
    /// Computes an image descriptor using the set visual vocabulary.
    ///
    /// ## Parameters
    /// * image: Image, for which the descriptor is computed.
    /// * keypoints: Keypoints detected in the input image.
    /// * imgDescriptor: Computed output image descriptor.
    /// * pointIdxsOfClusters: Indices of keypoints that belong to the cluster. This means that
    /// pointIdxsOfClusters[i] are keypoint indices that belong to the i -th cluster (word of vocabulary)
    /// returned if it is non-zero.
    /// * descriptors: Descriptors of the image keypoints that are returned if they are non-zero.
    ///
    /// ## C++ default parameters
    /// * point_idxs_of_clusters: 0
    /// * descriptors: 0
    pub fn compute_desc(&mut self, image: &dyn core::ToInputArray, keypoints: &mut types::VectorOfKeyPoint, img_descriptor: &mut dyn core::ToOutputArray, point_idxs_of_clusters: &mut types::VectorOfVectorOfint, descriptors: &mut core::Mat) -> Result<()> {
        input_array_arg!(image);
        output_array_arg!(img_descriptor);
        unsafe { sys::cv_BOWImgDescriptorExtractor_compute__InputArray_VectorOfKeyPoint__OutputArray_VectorOfVectorOfint_Mat(self.as_raw_BOWImgDescriptorExtractor(), image.as_raw__InputArray(), keypoints.as_raw_VectorOfKeyPoint(), img_descriptor.as_raw__OutputArray(), point_idxs_of_clusters.as_raw_VectorOfVectorOfint(), descriptors.as_raw_Mat()) }.into_result()
    }
    
    /// ## Parameters
    /// * keypointDescriptors: Computed descriptors to match with vocabulary.
    /// * imgDescriptor: Computed output image descriptor.
    /// * pointIdxsOfClusters: Indices of keypoints that belong to the cluster. This means that
    /// pointIdxsOfClusters[i] are keypoint indices that belong to the i -th cluster (word of vocabulary)
    /// returned if it is non-zero.
    ///
    /// ## C++ default parameters
    /// * point_idxs_of_clusters: 0
    pub fn compute(&mut self, keypoint_descriptors: &dyn core::ToInputArray, img_descriptor: &mut dyn core::ToOutputArray, point_idxs_of_clusters: &mut types::VectorOfVectorOfint) -> Result<()> {
        input_array_arg!(keypoint_descriptors);
        output_array_arg!(img_descriptor);
        unsafe { sys::cv_BOWImgDescriptorExtractor_compute__InputArray__OutputArray_VectorOfVectorOfint(self.as_raw_BOWImgDescriptorExtractor(), keypoint_descriptors.as_raw__InputArray(), img_descriptor.as_raw__OutputArray(), point_idxs_of_clusters.as_raw_VectorOfVectorOfint()) }.into_result()
    }
    
    pub fn compute2(&mut self, image: &core::Mat, keypoints: &mut types::VectorOfKeyPoint, img_descriptor: &mut core::Mat) -> Result<()> {
        unsafe { sys::cv_BOWImgDescriptorExtractor_compute2_Mat_VectorOfKeyPoint_Mat(self.as_raw_BOWImgDescriptorExtractor(), image.as_raw_Mat(), keypoints.as_raw_VectorOfKeyPoint(), img_descriptor.as_raw_Mat()) }.into_result()
    }
    
    /// Returns an image descriptor size if the vocabulary is set. Otherwise, it returns 0.
    pub fn descriptor_size(&self) -> Result<i32> {
        unsafe { sys::cv_BOWImgDescriptorExtractor_descriptorSize_const(self.as_raw_BOWImgDescriptorExtractor()) }.into_result()
    }
    
    /// Returns an image descriptor type.
    pub fn descriptor_type(&self) -> Result<i32> {
        unsafe { sys::cv_BOWImgDescriptorExtractor_descriptorType_const(self.as_raw_BOWImgDescriptorExtractor()) }.into_result()
    }
    
}

// boxed class cv::BOWKMeansTrainer
/// kmeans -based class to train visual vocabulary using the *bag of visual words* approach. :
pub struct BOWKMeansTrainer {
    #[doc(hidden)] pub(crate) ptr: *mut c_void
}

impl Drop for BOWKMeansTrainer {
    fn drop(&mut self) {
        unsafe { sys::cv_BOWKMeansTrainer_delete(self.ptr) };
    }
}

impl BOWKMeansTrainer {
    #[inline(always)] pub fn as_raw_BOWKMeansTrainer(&self) -> *mut c_void { self.ptr }

    pub unsafe fn from_raw_ptr(ptr: *mut c_void) -> Self {
        Self { ptr }
    }
}

unsafe impl Send for BOWKMeansTrainer {}

impl crate::features2d::BOWTrainer for BOWKMeansTrainer {
    #[inline(always)] fn as_raw_BOWTrainer(&self) -> *mut c_void { self.ptr }
}

impl BOWKMeansTrainer {
    /// The constructor.
    ///
    /// @see cv::kmeans
    ///
    /// ## C++ default parameters
    /// * termcrit: TermCriteria()
    /// * attempts: 3
    /// * flags: KMEANS_PP_CENTERS
    pub fn new_with_criteria(cluster_count: i32, termcrit: &core::TermCriteria, attempts: i32, flags: i32) -> Result<crate::features2d::BOWKMeansTrainer> {
        unsafe { sys::cv_BOWKMeansTrainer_BOWKMeansTrainer_int_TermCriteria_int_int(cluster_count, termcrit.as_raw_TermCriteria(), attempts, flags) }.into_result().map(|ptr| crate::features2d::BOWKMeansTrainer { ptr })
    }
    
    pub fn cluster(&self) -> Result<core::Mat> {
        unsafe { sys::cv_BOWKMeansTrainer_cluster_const(self.as_raw_BOWKMeansTrainer()) }.into_result().map(|ptr| core::Mat { ptr })
    }
    
    pub fn new(&self, descriptors: &core::Mat) -> Result<core::Mat> {
        unsafe { sys::cv_BOWKMeansTrainer_cluster_const_Mat(self.as_raw_BOWKMeansTrainer(), descriptors.as_raw_Mat()) }.into_result().map(|ptr| core::Mat { ptr })
    }
    
}

// Generating impl for trait crate::features2d::BOWTrainer
/// Abstract base class for training the *bag of visual words* vocabulary from a set of descriptors.
///
/// For details, see, for example, *Visual Categorization with Bags of Keypoints* by Gabriella Csurka,
/// Christopher R. Dance, Lixin Fan, Jutta Willamowski, Cedric Bray, 2004. :
pub trait BOWTrainer {
    #[inline(always)] fn as_raw_BOWTrainer(&self) -> *mut c_void;
    /// Adds descriptors to a training set.
    ///
    /// ## Parameters
    /// * descriptors: Descriptors to add to a training set. Each row of the descriptors matrix is a
    /// descriptor.
    ///
    /// The training set is clustered using clustermethod to construct the vocabulary.
    fn add(&mut self, descriptors: &core::Mat) -> Result<()> {
        unsafe { sys::cv_BOWTrainer_add_Mat(self.as_raw_BOWTrainer(), descriptors.as_raw_Mat()) }.into_result()
    }
    
    /// Returns a training set of descriptors.
    fn get_descriptors(&self) -> Result<types::VectorOfMat> {
        unsafe { sys::cv_BOWTrainer_getDescriptors_const(self.as_raw_BOWTrainer()) }.into_result().map(|ptr| types::VectorOfMat { ptr })
    }
    
    /// Returns the count of all descriptors stored in the training set.
    fn descriptors_count(&self) -> Result<i32> {
        unsafe { sys::cv_BOWTrainer_descriptorsCount_const(self.as_raw_BOWTrainer()) }.into_result()
    }
    
    fn clear(&mut self) -> Result<()> {
        unsafe { sys::cv_BOWTrainer_clear(self.as_raw_BOWTrainer()) }.into_result()
    }
    
    fn cluster(&self) -> Result<core::Mat> {
        unsafe { sys::cv_BOWTrainer_cluster_const(self.as_raw_BOWTrainer()) }.into_result().map(|ptr| core::Mat { ptr })
    }
    
    /// Clusters train descriptors.
    ///
    /// ## Parameters
    /// * descriptors: Descriptors to cluster. Each row of the descriptors matrix is a descriptor.
    /// Descriptors are not added to the inner train descriptor set.
    ///
    /// The vocabulary consists of cluster centers. So, this method returns the vocabulary. In the first
    /// variant of the method, train descriptors stored in the object are clustered. In the second variant,
    /// input descriptors are clustered.
    fn cluster_with_descriptors(&self, descriptors: &core::Mat) -> Result<core::Mat> {
        unsafe { sys::cv_BOWTrainer_cluster_const_Mat(self.as_raw_BOWTrainer(), descriptors.as_raw_Mat()) }.into_result().map(|ptr| core::Mat { ptr })
    }
    
}

// boxed class cv::BRISK
/// Class implementing the BRISK keypoint detector and descriptor extractor, described in [LCS11](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_LCS11) .
pub struct BRISK {
    #[doc(hidden)] pub(crate) ptr: *mut c_void
}

impl Drop for BRISK {
    fn drop(&mut self) {
        unsafe { sys::cv_BRISK_delete(self.ptr) };
    }
}

impl BRISK {
    #[inline(always)] pub fn as_raw_BRISK(&self) -> *mut c_void { self.ptr }

    pub unsafe fn from_raw_ptr(ptr: *mut c_void) -> Self {
        Self { ptr }
    }
}

unsafe impl Send for BRISK {}

impl core::AlgorithmTrait for BRISK {
    #[inline(always)] fn as_raw_Algorithm(&self) -> *mut c_void { self.ptr }
}

impl crate::features2d::Feature2DTrait for BRISK {
    #[inline(always)] fn as_raw_Feature2D(&self) -> *mut c_void { self.ptr }
}

impl BRISK {
    /// The BRISK constructor
    ///
    /// ## Parameters
    /// * thresh: AGAST detection threshold score.
    /// * octaves: detection octaves. Use 0 to do single scale.
    /// * patternScale: apply this scale to the pattern used for sampling the neighbourhood of a
    /// keypoint.
    ///
    /// ## C++ default parameters
    /// * thresh: 30
    /// * octaves: 3
    /// * pattern_scale: 1.0f
    pub fn create(thresh: i32, octaves: i32, pattern_scale: f32) -> Result<types::PtrOfBRISK> {
        unsafe { sys::cv_BRISK_create_int_int_float(thresh, octaves, pattern_scale) }.into_result().map(|ptr| types::PtrOfBRISK { ptr })
    }
    
    /// The BRISK constructor for a custom pattern
    ///
    /// ## Parameters
    /// * radiusList: defines the radii (in pixels) where the samples around a keypoint are taken (for
    /// keypoint scale 1).
    /// * numberList: defines the number of sampling points on the sampling circle. Must be the same
    /// size as radiusList..
    /// * dMax: threshold for the short pairings used for descriptor formation (in pixels for keypoint
    /// scale 1).
    /// * dMin: threshold for the long pairings used for orientation determination (in pixels for
    /// keypoint scale 1).
    /// * indexChange: index remapping of the bits.
    ///
    /// ## C++ default parameters
    /// * d_max: 5.85f
    /// * d_min: 8.2f
    /// * index_change: std::vector<int>()
    pub fn create_with_pattern(radius_list: &types::VectorOffloat, number_list: &types::VectorOfint, d_max: f32, d_min: f32, index_change: &types::VectorOfint) -> Result<types::PtrOfBRISK> {
        unsafe { sys::cv_BRISK_create_VectorOffloat_VectorOfint_float_float_VectorOfint(radius_list.as_raw_VectorOffloat(), number_list.as_raw_VectorOfint(), d_max, d_min, index_change.as_raw_VectorOfint()) }.into_result().map(|ptr| types::PtrOfBRISK { ptr })
    }
    
    /// The BRISK constructor for a custom pattern, detection threshold and octaves
    ///
    /// ## Parameters
    /// * thresh: AGAST detection threshold score.
    /// * octaves: detection octaves. Use 0 to do single scale.
    /// * radiusList: defines the radii (in pixels) where the samples around a keypoint are taken (for
    /// keypoint scale 1).
    /// * numberList: defines the number of sampling points on the sampling circle. Must be the same
    /// size as radiusList..
    /// * dMax: threshold for the short pairings used for descriptor formation (in pixels for keypoint
    /// scale 1).
    /// * dMin: threshold for the long pairings used for orientation determination (in pixels for
    /// keypoint scale 1).
    /// * indexChange: index remapping of the bits.
    ///
    /// ## C++ default parameters
    /// * d_max: 5.85f
    /// * d_min: 8.2f
    /// * index_change: std::vector<int>()
    pub fn create_with_pattern_threshold_octaves(thresh: i32, octaves: i32, radius_list: &types::VectorOffloat, number_list: &types::VectorOfint, d_max: f32, d_min: f32, index_change: &types::VectorOfint) -> Result<types::PtrOfBRISK> {
        unsafe { sys::cv_BRISK_create_int_int_VectorOffloat_VectorOfint_float_float_VectorOfint(thresh, octaves, radius_list.as_raw_VectorOffloat(), number_list.as_raw_VectorOfint(), d_max, d_min, index_change.as_raw_VectorOfint()) }.into_result().map(|ptr| types::PtrOfBRISK { ptr })
    }
    
    pub fn get_default_name(&self) -> Result<String> {
        unsafe { sys::cv_BRISK_getDefaultName_const(self.as_raw_BRISK()) }.into_result().map(crate::templ::receive_string_mut)
    }
    
}

// Generating impl for trait crate::features2d::DescriptorMatcher
/// Abstract base class for matching keypoint descriptors.
///
/// It has two groups of match methods: for matching descriptors of an image with another image or with
/// an image set.
pub trait DescriptorMatcher: core::AlgorithmTrait {
    #[inline(always)] fn as_raw_DescriptorMatcher(&self) -> *mut c_void;
    /// Adds descriptors to train a CPU(trainDescCollectionis) or GPU(utrainDescCollectionis) descriptor
    /// collection.
    ///
    /// If the collection is not empty, the new descriptors are added to existing train descriptors.
    ///
    /// ## Parameters
    /// * descriptors: Descriptors to add. Each descriptors[i] is a set of descriptors from the same
    /// train image.
    fn add(&mut self, descriptors: &dyn core::ToInputArray) -> Result<()> {
        input_array_arg!(descriptors);
        unsafe { sys::cv_DescriptorMatcher_add__InputArray(self.as_raw_DescriptorMatcher(), descriptors.as_raw__InputArray()) }.into_result()
    }
    
    /// Returns a constant link to the train descriptor collection trainDescCollection .
    fn get_train_descriptors(&self) -> Result<types::VectorOfMat> {
        unsafe { sys::cv_DescriptorMatcher_getTrainDescriptors_const(self.as_raw_DescriptorMatcher()) }.into_result().map(|ptr| types::VectorOfMat { ptr })
    }
    
    /// Clears the train descriptor collections.
    fn clear(&mut self) -> Result<()> {
        unsafe { sys::cv_DescriptorMatcher_clear(self.as_raw_DescriptorMatcher()) }.into_result()
    }
    
    /// Returns true if there are no train descriptors in the both collections.
    fn empty(&self) -> Result<bool> {
        unsafe { sys::cv_DescriptorMatcher_empty_const(self.as_raw_DescriptorMatcher()) }.into_result()
    }
    
    /// Returns true if the descriptor matcher supports masking permissible matches.
    fn is_mask_supported(&self) -> Result<bool> {
        unsafe { sys::cv_DescriptorMatcher_isMaskSupported_const(self.as_raw_DescriptorMatcher()) }.into_result()
    }
    
    /// Trains a descriptor matcher
    ///
    /// Trains a descriptor matcher (for example, the flann index). In all methods to match, the method
    /// train() is run every time before matching. Some descriptor matchers (for example, BruteForceMatcher)
    /// have an empty implementation of this method. Other matchers really train their inner structures (for
    /// example, FlannBasedMatcher trains flann::Index ).
    fn train(&mut self) -> Result<()> {
        unsafe { sys::cv_DescriptorMatcher_train(self.as_raw_DescriptorMatcher()) }.into_result()
    }
    
    /// Finds the best match for each descriptor from a query set.
    ///
    /// ## Parameters
    /// * queryDescriptors: Query set of descriptors.
    /// * trainDescriptors: Train set of descriptors. This set is not added to the train descriptors
    /// collection stored in the class object.
    /// * matches: Matches. If a query descriptor is masked out in mask , no match is added for this
    /// descriptor. So, matches size may be smaller than the query descriptors count.
    /// * mask: Mask specifying permissible matches between an input query and train matrices of
    /// descriptors.
    ///
    /// In the first variant of this method, the train descriptors are passed as an input argument. In the
    /// second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
    /// used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
    /// matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
    /// mask.at\<uchar\>(i,j) is non-zero.
    ///
    /// ## C++ default parameters
    /// * mask: noArray()
    fn train_matches(&self, query_descriptors: &dyn core::ToInputArray, train_descriptors: &dyn core::ToInputArray, matches: &mut types::VectorOfDMatch, mask: &dyn core::ToInputArray) -> Result<()> {
        input_array_arg!(query_descriptors);
        input_array_arg!(train_descriptors);
        input_array_arg!(mask);
        unsafe { sys::cv_DescriptorMatcher_match_const__InputArray__InputArray_VectorOfDMatch__InputArray(self.as_raw_DescriptorMatcher(), query_descriptors.as_raw__InputArray(), train_descriptors.as_raw__InputArray(), matches.as_raw_VectorOfDMatch(), mask.as_raw__InputArray()) }.into_result()
    }
    
    /// Finds the k best matches for each descriptor from a query set.
    ///
    /// ## Parameters
    /// * queryDescriptors: Query set of descriptors.
    /// * trainDescriptors: Train set of descriptors. This set is not added to the train descriptors
    /// collection stored in the class object.
    /// * mask: Mask specifying permissible matches between an input query and train matrices of
    /// descriptors.
    /// * matches: Matches. Each matches[i] is k or less matches for the same query descriptor.
    /// * k: Count of best matches found per each query descriptor or less if a query descriptor has
    /// less than k possible matches in total.
    /// * compactResult: Parameter used when the mask (or masks) is not empty. If compactResult is
    /// false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
    /// the matches vector does not contain matches for fully masked-out query descriptors.
    ///
    /// These extended variants of DescriptorMatcher::match methods find several best matches for each query
    /// descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match
    /// for the details about query and train descriptors.
    ///
    /// ## C++ default parameters
    /// * mask: noArray()
    /// * compact_result: false
    fn knn_train_matches(&self, query_descriptors: &dyn core::ToInputArray, train_descriptors: &dyn core::ToInputArray, matches: &mut types::VectorOfVectorOfDMatch, k: i32, mask: &dyn core::ToInputArray, compact_result: bool) -> Result<()> {
        input_array_arg!(query_descriptors);
        input_array_arg!(train_descriptors);
        input_array_arg!(mask);
        unsafe { sys::cv_DescriptorMatcher_knnMatch_const__InputArray__InputArray_VectorOfVectorOfDMatch_int__InputArray_bool(self.as_raw_DescriptorMatcher(), query_descriptors.as_raw__InputArray(), train_descriptors.as_raw__InputArray(), matches.as_raw_VectorOfVectorOfDMatch(), k, mask.as_raw__InputArray(), compact_result) }.into_result()
    }
    
    /// For each query descriptor, finds the training descriptors not farther than the specified distance.
    ///
    /// ## Parameters
    /// * queryDescriptors: Query set of descriptors.
    /// * trainDescriptors: Train set of descriptors. This set is not added to the train descriptors
    /// collection stored in the class object.
    /// * matches: Found matches.
    /// * compactResult: Parameter used when the mask (or masks) is not empty. If compactResult is
    /// false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
    /// the matches vector does not contain matches for fully masked-out query descriptors.
    /// * maxDistance: Threshold for the distance between matched descriptors. Distance means here
    /// metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
    /// in Pixels)!
    /// * mask: Mask specifying permissible matches between an input query and train matrices of
    /// descriptors.
    ///
    /// For each query descriptor, the methods find such training descriptors that the distance between the
    /// query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
    /// returned in the distance increasing order.
    ///
    /// ## C++ default parameters
    /// * mask: noArray()
    /// * compact_result: false
    fn train_radius_matches(&self, query_descriptors: &dyn core::ToInputArray, train_descriptors: &dyn core::ToInputArray, matches: &mut types::VectorOfVectorOfDMatch, max_distance: f32, mask: &dyn core::ToInputArray, compact_result: bool) -> Result<()> {
        input_array_arg!(query_descriptors);
        input_array_arg!(train_descriptors);
        input_array_arg!(mask);
        unsafe { sys::cv_DescriptorMatcher_radiusMatch_const__InputArray__InputArray_VectorOfVectorOfDMatch_float__InputArray_bool(self.as_raw_DescriptorMatcher(), query_descriptors.as_raw__InputArray(), train_descriptors.as_raw__InputArray(), matches.as_raw_VectorOfVectorOfDMatch(), max_distance, mask.as_raw__InputArray(), compact_result) }.into_result()
    }
    
    /// ## Parameters
    /// * queryDescriptors: Query set of descriptors.
    /// * matches: Matches. If a query descriptor is masked out in mask , no match is added for this
    /// descriptor. So, matches size may be smaller than the query descriptors count.
    /// * masks: Set of masks. Each masks[i] specifies permissible matches between the input query
    /// descriptors and stored train descriptors from the i-th image trainDescCollection[i].
    ///
    /// ## C++ default parameters
    /// * masks: noArray()
    fn matches(&mut self, query_descriptors: &dyn core::ToInputArray, matches: &mut types::VectorOfDMatch, masks: &dyn core::ToInputArray) -> Result<()> {
        input_array_arg!(query_descriptors);
        input_array_arg!(masks);
        unsafe { sys::cv_DescriptorMatcher_match__InputArray_VectorOfDMatch__InputArray(self.as_raw_DescriptorMatcher(), query_descriptors.as_raw__InputArray(), matches.as_raw_VectorOfDMatch(), masks.as_raw__InputArray()) }.into_result()
    }
    
    /// ## Parameters
    /// * queryDescriptors: Query set of descriptors.
    /// * matches: Matches. Each matches[i] is k or less matches for the same query descriptor.
    /// * k: Count of best matches found per each query descriptor or less if a query descriptor has
    /// less than k possible matches in total.
    /// * masks: Set of masks. Each masks[i] specifies permissible matches between the input query
    /// descriptors and stored train descriptors from the i-th image trainDescCollection[i].
    /// * compactResult: Parameter used when the mask (or masks) is not empty. If compactResult is
    /// false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
    /// the matches vector does not contain matches for fully masked-out query descriptors.
    ///
    /// ## C++ default parameters
    /// * masks: noArray()
    /// * compact_result: false
    fn knn_matches(&mut self, query_descriptors: &dyn core::ToInputArray, matches: &mut types::VectorOfVectorOfDMatch, k: i32, masks: &dyn core::ToInputArray, compact_result: bool) -> Result<()> {
        input_array_arg!(query_descriptors);
        input_array_arg!(masks);
        unsafe { sys::cv_DescriptorMatcher_knnMatch__InputArray_VectorOfVectorOfDMatch_int__InputArray_bool(self.as_raw_DescriptorMatcher(), query_descriptors.as_raw__InputArray(), matches.as_raw_VectorOfVectorOfDMatch(), k, masks.as_raw__InputArray(), compact_result) }.into_result()
    }
    
    /// ## Parameters
    /// * queryDescriptors: Query set of descriptors.
    /// * matches: Found matches.
    /// * maxDistance: Threshold for the distance between matched descriptors. Distance means here
    /// metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
    /// in Pixels)!
    /// * masks: Set of masks. Each masks[i] specifies permissible matches between the input query
    /// descriptors and stored train descriptors from the i-th image trainDescCollection[i].
    /// * compactResult: Parameter used when the mask (or masks) is not empty. If compactResult is
    /// false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
    /// the matches vector does not contain matches for fully masked-out query descriptors.
    ///
    /// ## C++ default parameters
    /// * masks: noArray()
    /// * compact_result: false
    fn radius_matches(&mut self, query_descriptors: &dyn core::ToInputArray, matches: &mut types::VectorOfVectorOfDMatch, max_distance: f32, masks: &dyn core::ToInputArray, compact_result: bool) -> Result<()> {
        input_array_arg!(query_descriptors);
        input_array_arg!(masks);
        unsafe { sys::cv_DescriptorMatcher_radiusMatch__InputArray_VectorOfVectorOfDMatch_float__InputArray_bool(self.as_raw_DescriptorMatcher(), query_descriptors.as_raw__InputArray(), matches.as_raw_VectorOfVectorOfDMatch(), max_distance, masks.as_raw__InputArray(), compact_result) }.into_result()
    }
    
    fn write(&self, file_name: &str) -> Result<()> {
        string_arg!(file_name);
        unsafe { sys::cv_DescriptorMatcher_write_const_String(self.as_raw_DescriptorMatcher(), file_name.as_ptr()) }.into_result()
    }
    
    fn read(&mut self, file_name: &str) -> Result<()> {
        string_arg!(file_name);
        unsafe { sys::cv_DescriptorMatcher_read_String(self.as_raw_DescriptorMatcher(), file_name.as_ptr()) }.into_result()
    }
    
    fn read_1(&mut self, unnamed_arg: &core::FileNode) -> Result<()> {
        unsafe { sys::cv_DescriptorMatcher_read_FileNode(self.as_raw_DescriptorMatcher(), unnamed_arg.as_raw_FileNode()) }.into_result()
    }
    
    fn write_1(&self, unnamed_arg: &mut core::FileStorage) -> Result<()> {
        unsafe { sys::cv_DescriptorMatcher_write_const_FileStorage(self.as_raw_DescriptorMatcher(), unnamed_arg.as_raw_FileStorage()) }.into_result()
    }
    
    /// Clones the matcher.
    ///
    /// ## Parameters
    /// * emptyTrainData: If emptyTrainData is false, the method creates a deep copy of the object,
    /// that is, copies both parameters and train data. If emptyTrainData is true, the method creates an
    /// object copy with the current parameters but with empty train data.
    ///
    /// ## C++ default parameters
    /// * empty_train_data: false
    fn clone(&self, empty_train_data: bool) -> Result<types::PtrOfDescriptorMatcher> {
        unsafe { sys::cv_DescriptorMatcher_clone_const_bool(self.as_raw_DescriptorMatcher(), empty_train_data) }.into_result().map(|ptr| types::PtrOfDescriptorMatcher { ptr })
    }
    
    ///
    /// ## C++ default parameters
    /// * name: String()
    fn write_2(&self, fs: &types::PtrOfFileStorage, name: &str) -> Result<()> {
        string_arg!(name);
        unsafe { sys::cv_DescriptorMatcher_write_const_PtrOfFileStorage_String(self.as_raw_DescriptorMatcher(), fs.as_raw_PtrOfFileStorage(), name.as_ptr()) }.into_result()
    }
    
}

impl dyn DescriptorMatcher + '_ {
    /// Creates a descriptor matcher of a given type with the default parameters (using default
    /// constructor).
    ///
    /// ## Parameters
    /// * descriptorMatcherType: Descriptor matcher type. Now the following matcher types are
    /// supported:
    /// *   `BruteForce` (it uses L2 )
    /// *   `BruteForce-L1`
    /// *   `BruteForce-Hamming`
    /// *   `BruteForce-Hamming(2)`
    /// *   `FlannBased`
    pub fn create(descriptor_matcher_type: &str) -> Result<types::PtrOfDescriptorMatcher> {
        string_arg!(descriptor_matcher_type);
        unsafe { sys::cv_DescriptorMatcher_create_String(descriptor_matcher_type.as_ptr()) }.into_result().map(|ptr| types::PtrOfDescriptorMatcher { ptr })
    }
    
    pub fn create_with_matcher_type(matcher_type: i32) -> Result<types::PtrOfDescriptorMatcher> {
        unsafe { sys::cv_DescriptorMatcher_create_int(matcher_type) }.into_result().map(|ptr| types::PtrOfDescriptorMatcher { ptr })
    }
    
}

// Generating impl for trait crate::features2d::FastFeatureDetector
/// Wrapping class for feature detection using the FAST method. :
pub trait FastFeatureDetector: crate::features2d::Feature2DTrait {
    #[inline(always)] fn as_raw_FastFeatureDetector(&self) -> *mut c_void;
    fn set_threshold(&mut self, threshold: i32) -> Result<()> {
        unsafe { sys::cv_FastFeatureDetector_setThreshold_int(self.as_raw_FastFeatureDetector(), threshold) }.into_result()
    }
    
    fn get_threshold(&self) -> Result<i32> {
        unsafe { sys::cv_FastFeatureDetector_getThreshold_const(self.as_raw_FastFeatureDetector()) }.into_result()
    }
    
    fn set_nonmax_suppression(&mut self, f: bool) -> Result<()> {
        unsafe { sys::cv_FastFeatureDetector_setNonmaxSuppression_bool(self.as_raw_FastFeatureDetector(), f) }.into_result()
    }
    
    fn get_nonmax_suppression(&self) -> Result<bool> {
        unsafe { sys::cv_FastFeatureDetector_getNonmaxSuppression_const(self.as_raw_FastFeatureDetector()) }.into_result()
    }
    
    fn set_type(&mut self, _type: i32) -> Result<()> {
        unsafe { sys::cv_FastFeatureDetector_setType_int(self.as_raw_FastFeatureDetector(), _type) }.into_result()
    }
    
    fn get_type(&self) -> Result<i32> {
        unsafe { sys::cv_FastFeatureDetector_getType_const(self.as_raw_FastFeatureDetector()) }.into_result()
    }
    
    fn get_default_name(&self) -> Result<String> {
        unsafe { sys::cv_FastFeatureDetector_getDefaultName_const(self.as_raw_FastFeatureDetector()) }.into_result().map(crate::templ::receive_string_mut)
    }
    
}

impl dyn FastFeatureDetector + '_ {
    ///
    /// ## C++ default parameters
    /// * threshold: 10
    /// * nonmax_suppression: true
    /// * _type: FastFeatureDetector::TYPE_9_16
    pub fn create(threshold: i32, nonmax_suppression: bool, _type: i32) -> Result<types::PtrOfFastFeatureDetector> {
        unsafe { sys::cv_FastFeatureDetector_create_int_bool_int(threshold, nonmax_suppression, _type) }.into_result().map(|ptr| types::PtrOfFastFeatureDetector { ptr })
    }
    
}

// Generating impl for trait crate::features2d::Feature2D
/// Abstract base class for 2D image feature detectors and descriptor extractors
pub trait Feature2DTrait: core::AlgorithmTrait {
    #[inline(always)] fn as_raw_Feature2D(&self) -> *mut c_void;
    /// Detects keypoints in an image (first variant) or image set (second variant).
    ///
    /// ## Parameters
    /// * image: Image.
    /// * keypoints: The detected keypoints. In the second variant of the method keypoints[i] is a set
    /// of keypoints detected in images[i] .
    /// * mask: Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
    /// matrix with non-zero values in the region of interest.
    ///
    /// ## C++ default parameters
    /// * mask: noArray()
    fn detect(&mut self, image: &dyn core::ToInputArray, keypoints: &mut types::VectorOfKeyPoint, mask: &dyn core::ToInputArray) -> Result<()> {
        input_array_arg!(image);
        input_array_arg!(mask);
        unsafe { sys::cv_Feature2D_detect__InputArray_VectorOfKeyPoint__InputArray(self.as_raw_Feature2D(), image.as_raw__InputArray(), keypoints.as_raw_VectorOfKeyPoint(), mask.as_raw__InputArray()) }.into_result()
    }
    
    /// ## Parameters
    /// * images: Image set.
    /// * keypoints: The detected keypoints. In the second variant of the method keypoints[i] is a set
    /// of keypoints detected in images[i] .
    /// * masks: Masks for each input image specifying where to look for keypoints (optional).
    /// masks[i] is a mask for images[i].
    ///
    /// ## C++ default parameters
    /// * masks: noArray()
    fn detect_multiple(&mut self, images: &dyn core::ToInputArray, keypoints: &mut types::VectorOfVectorOfKeyPoint, masks: &dyn core::ToInputArray) -> Result<()> {
        input_array_arg!(images);
        input_array_arg!(masks);
        unsafe { sys::cv_Feature2D_detect__InputArray_VectorOfVectorOfKeyPoint__InputArray(self.as_raw_Feature2D(), images.as_raw__InputArray(), keypoints.as_raw_VectorOfVectorOfKeyPoint(), masks.as_raw__InputArray()) }.into_result()
    }
    
    /// Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
    /// (second variant).
    ///
    /// ## Parameters
    /// * image: Image.
    /// * keypoints: Input collection of keypoints. Keypoints for which a descriptor cannot be
    /// computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
    /// with several dominant orientations (for each orientation).
    /// * descriptors: Computed descriptors. In the second variant of the method descriptors[i] are
    /// descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
    /// descriptor for keypoint j-th keypoint.
    fn compute(&mut self, image: &dyn core::ToInputArray, keypoints: &mut types::VectorOfKeyPoint, descriptors: &mut dyn core::ToOutputArray) -> Result<()> {
        input_array_arg!(image);
        output_array_arg!(descriptors);
        unsafe { sys::cv_Feature2D_compute__InputArray_VectorOfKeyPoint__OutputArray(self.as_raw_Feature2D(), image.as_raw__InputArray(), keypoints.as_raw_VectorOfKeyPoint(), descriptors.as_raw__OutputArray()) }.into_result()
    }
    
    /// ## Parameters
    /// * images: Image set.
    /// * keypoints: Input collection of keypoints. Keypoints for which a descriptor cannot be
    /// computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
    /// with several dominant orientations (for each orientation).
    /// * descriptors: Computed descriptors. In the second variant of the method descriptors[i] are
    /// descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
    /// descriptor for keypoint j-th keypoint.
    fn compute_multiple(&mut self, images: &dyn core::ToInputArray, keypoints: &mut types::VectorOfVectorOfKeyPoint, descriptors: &mut dyn core::ToOutputArray) -> Result<()> {
        input_array_arg!(images);
        output_array_arg!(descriptors);
        unsafe { sys::cv_Feature2D_compute__InputArray_VectorOfVectorOfKeyPoint__OutputArray(self.as_raw_Feature2D(), images.as_raw__InputArray(), keypoints.as_raw_VectorOfVectorOfKeyPoint(), descriptors.as_raw__OutputArray()) }.into_result()
    }
    
    /// Detects keypoints and computes the descriptors
    ///
    /// ## C++ default parameters
    /// * use_provided_keypoints: false
    fn detect_and_compute(&mut self, image: &dyn core::ToInputArray, mask: &dyn core::ToInputArray, keypoints: &mut types::VectorOfKeyPoint, descriptors: &mut dyn core::ToOutputArray, use_provided_keypoints: bool) -> Result<()> {
        input_array_arg!(image);
        input_array_arg!(mask);
        output_array_arg!(descriptors);
        unsafe { sys::cv_Feature2D_detectAndCompute__InputArray__InputArray_VectorOfKeyPoint__OutputArray_bool(self.as_raw_Feature2D(), image.as_raw__InputArray(), mask.as_raw__InputArray(), keypoints.as_raw_VectorOfKeyPoint(), descriptors.as_raw__OutputArray(), use_provided_keypoints) }.into_result()
    }
    
    fn descriptor_size(&self) -> Result<i32> {
        unsafe { sys::cv_Feature2D_descriptorSize_const(self.as_raw_Feature2D()) }.into_result()
    }
    
    fn descriptor_type(&self) -> Result<i32> {
        unsafe { sys::cv_Feature2D_descriptorType_const(self.as_raw_Feature2D()) }.into_result()
    }
    
    fn default_norm(&self) -> Result<i32> {
        unsafe { sys::cv_Feature2D_defaultNorm_const(self.as_raw_Feature2D()) }.into_result()
    }
    
    fn write(&self, file_name: &str) -> Result<()> {
        string_arg!(file_name);
        unsafe { sys::cv_Feature2D_write_const_String(self.as_raw_Feature2D(), file_name.as_ptr()) }.into_result()
    }
    
    fn read(&mut self, file_name: &str) -> Result<()> {
        string_arg!(file_name);
        unsafe { sys::cv_Feature2D_read_String(self.as_raw_Feature2D(), file_name.as_ptr()) }.into_result()
    }
    
    fn write_1(&self, unnamed_arg: &mut core::FileStorage) -> Result<()> {
        unsafe { sys::cv_Feature2D_write_const_FileStorage(self.as_raw_Feature2D(), unnamed_arg.as_raw_FileStorage()) }.into_result()
    }
    
    fn read_1(&mut self, unnamed_arg: &core::FileNode) -> Result<()> {
        unsafe { sys::cv_Feature2D_read_FileNode(self.as_raw_Feature2D(), unnamed_arg.as_raw_FileNode()) }.into_result()
    }
    
    /// Return true if detector object is empty
    fn empty(&self) -> Result<bool> {
        unsafe { sys::cv_Feature2D_empty_const(self.as_raw_Feature2D()) }.into_result()
    }
    
    fn get_default_name(&self) -> Result<String> {
        unsafe { sys::cv_Feature2D_getDefaultName_const(self.as_raw_Feature2D()) }.into_result().map(crate::templ::receive_string_mut)
    }
    
    ///
    /// ## C++ default parameters
    /// * name: String()
    fn write_2(&self, fs: &types::PtrOfFileStorage, name: &str) -> Result<()> {
        string_arg!(name);
        unsafe { sys::cv_Feature2D_write_const_PtrOfFileStorage_String(self.as_raw_Feature2D(), fs.as_raw_PtrOfFileStorage(), name.as_ptr()) }.into_result()
    }
    
}

// boxed class cv::Feature2D
/// Abstract base class for 2D image feature detectors and descriptor extractors
pub struct Feature2D {
    #[doc(hidden)] pub(crate) ptr: *mut c_void
}

impl Drop for Feature2D {
    fn drop(&mut self) {
        unsafe { sys::cv_Feature2D_delete(self.ptr) };
    }
}

impl Feature2D {
    #[inline(always)] pub fn as_raw_Feature2D(&self) -> *mut c_void { self.ptr }

    pub unsafe fn from_raw_ptr(ptr: *mut c_void) -> Self {
        Self { ptr }
    }
}

unsafe impl Send for Feature2D {}

impl core::AlgorithmTrait for Feature2D {
    #[inline(always)] fn as_raw_Algorithm(&self) -> *mut c_void { self.ptr }
}

impl crate::features2d::Feature2DTrait for Feature2D {
    #[inline(always)] fn as_raw_Feature2D(&self) -> *mut c_void { self.ptr }
}

// boxed class cv::FlannBasedMatcher
/// Flann-based descriptor matcher.
///
/// This matcher trains cv::flann::Index on a train descriptor collection and calls its nearest search
/// methods to find the best matches. So, this matcher may be faster when matching a large train
/// collection than the brute force matcher. FlannBasedMatcher does not support masking permissible
/// matches of descriptor sets because flann::Index does not support this. :
pub struct FlannBasedMatcher {
    #[doc(hidden)] pub(crate) ptr: *mut c_void
}

impl Drop for FlannBasedMatcher {
    fn drop(&mut self) {
        unsafe { sys::cv_FlannBasedMatcher_delete(self.ptr) };
    }
}

impl FlannBasedMatcher {
    #[inline(always)] pub fn as_raw_FlannBasedMatcher(&self) -> *mut c_void { self.ptr }

    pub unsafe fn from_raw_ptr(ptr: *mut c_void) -> Self {
        Self { ptr }
    }
}

unsafe impl Send for FlannBasedMatcher {}

impl core::AlgorithmTrait for FlannBasedMatcher {
    #[inline(always)] fn as_raw_Algorithm(&self) -> *mut c_void { self.ptr }
}

impl crate::features2d::DescriptorMatcher for FlannBasedMatcher {
    #[inline(always)] fn as_raw_DescriptorMatcher(&self) -> *mut c_void { self.ptr }
}

impl FlannBasedMatcher {
    pub fn add(&mut self, descriptors: &dyn core::ToInputArray) -> Result<()> {
        input_array_arg!(descriptors);
        unsafe { sys::cv_FlannBasedMatcher_add__InputArray(self.as_raw_FlannBasedMatcher(), descriptors.as_raw__InputArray()) }.into_result()
    }
    
    pub fn clear(&mut self) -> Result<()> {
        unsafe { sys::cv_FlannBasedMatcher_clear(self.as_raw_FlannBasedMatcher()) }.into_result()
    }
    
    pub fn read(&mut self, unnamed_arg: &core::FileNode) -> Result<()> {
        unsafe { sys::cv_FlannBasedMatcher_read_FileNode(self.as_raw_FlannBasedMatcher(), unnamed_arg.as_raw_FileNode()) }.into_result()
    }
    
    pub fn write(&self, unnamed_arg: &mut core::FileStorage) -> Result<()> {
        unsafe { sys::cv_FlannBasedMatcher_write_const_FileStorage(self.as_raw_FlannBasedMatcher(), unnamed_arg.as_raw_FileStorage()) }.into_result()
    }
    
    pub fn train(&mut self) -> Result<()> {
        unsafe { sys::cv_FlannBasedMatcher_train(self.as_raw_FlannBasedMatcher()) }.into_result()
    }
    
    pub fn is_mask_supported(&self) -> Result<bool> {
        unsafe { sys::cv_FlannBasedMatcher_isMaskSupported_const(self.as_raw_FlannBasedMatcher()) }.into_result()
    }
    
    pub fn create() -> Result<types::PtrOfFlannBasedMatcher> {
        unsafe { sys::cv_FlannBasedMatcher_create() }.into_result().map(|ptr| types::PtrOfFlannBasedMatcher { ptr })
    }
    
    ///
    /// ## C++ default parameters
    /// * empty_train_data: false
    pub fn clone(&self, empty_train_data: bool) -> Result<types::PtrOfDescriptorMatcher> {
        unsafe { sys::cv_FlannBasedMatcher_clone_const_bool(self.as_raw_FlannBasedMatcher(), empty_train_data) }.into_result().map(|ptr| types::PtrOfDescriptorMatcher { ptr })
    }
    
}

// Generating impl for trait crate::features2d::GFTTDetector
/// Wrapping class for feature detection using the goodFeaturesToTrack function. :
pub trait GFTTDetector: crate::features2d::Feature2DTrait {
    #[inline(always)] fn as_raw_GFTTDetector(&self) -> *mut c_void;
    fn set_max_features(&mut self, max_features: i32) -> Result<()> {
        unsafe { sys::cv_GFTTDetector_setMaxFeatures_int(self.as_raw_GFTTDetector(), max_features) }.into_result()
    }
    
    fn get_max_features(&self) -> Result<i32> {
        unsafe { sys::cv_GFTTDetector_getMaxFeatures_const(self.as_raw_GFTTDetector()) }.into_result()
    }
    
    fn set_quality_level(&mut self, qlevel: f64) -> Result<()> {
        unsafe { sys::cv_GFTTDetector_setQualityLevel_double(self.as_raw_GFTTDetector(), qlevel) }.into_result()
    }
    
    fn get_quality_level(&self) -> Result<f64> {
        unsafe { sys::cv_GFTTDetector_getQualityLevel_const(self.as_raw_GFTTDetector()) }.into_result()
    }
    
    fn set_min_distance(&mut self, min_distance: f64) -> Result<()> {
        unsafe { sys::cv_GFTTDetector_setMinDistance_double(self.as_raw_GFTTDetector(), min_distance) }.into_result()
    }
    
    fn get_min_distance(&self) -> Result<f64> {
        unsafe { sys::cv_GFTTDetector_getMinDistance_const(self.as_raw_GFTTDetector()) }.into_result()
    }
    
    fn set_block_size(&mut self, block_size: i32) -> Result<()> {
        unsafe { sys::cv_GFTTDetector_setBlockSize_int(self.as_raw_GFTTDetector(), block_size) }.into_result()
    }
    
    fn get_block_size(&self) -> Result<i32> {
        unsafe { sys::cv_GFTTDetector_getBlockSize_const(self.as_raw_GFTTDetector()) }.into_result()
    }
    
    fn set_harris_detector(&mut self, val: bool) -> Result<()> {
        unsafe { sys::cv_GFTTDetector_setHarrisDetector_bool(self.as_raw_GFTTDetector(), val) }.into_result()
    }
    
    fn get_harris_detector(&self) -> Result<bool> {
        unsafe { sys::cv_GFTTDetector_getHarrisDetector_const(self.as_raw_GFTTDetector()) }.into_result()
    }
    
    fn set_k(&mut self, k: f64) -> Result<()> {
        unsafe { sys::cv_GFTTDetector_setK_double(self.as_raw_GFTTDetector(), k) }.into_result()
    }
    
    fn get_k(&self) -> Result<f64> {
        unsafe { sys::cv_GFTTDetector_getK_const(self.as_raw_GFTTDetector()) }.into_result()
    }
    
    fn get_default_name(&self) -> Result<String> {
        unsafe { sys::cv_GFTTDetector_getDefaultName_const(self.as_raw_GFTTDetector()) }.into_result().map(crate::templ::receive_string_mut)
    }
    
}

impl dyn GFTTDetector + '_ {
    ///
    /// ## C++ default parameters
    /// * max_corners: 1000
    /// * quality_level: 0.01
    /// * min_distance: 1
    /// * block_size: 3
    /// * use_harris_detector: false
    /// * k: 0.04
    pub fn create(max_corners: i32, quality_level: f64, min_distance: f64, block_size: i32, use_harris_detector: bool, k: f64) -> Result<types::PtrOfGFTTDetector> {
        unsafe { sys::cv_GFTTDetector_create_int_double_double_int_bool_double(max_corners, quality_level, min_distance, block_size, use_harris_detector, k) }.into_result().map(|ptr| types::PtrOfGFTTDetector { ptr })
    }
    
    ///
    /// ## C++ default parameters
    /// * use_harris_detector: false
    /// * k: 0.04
    pub fn create_with_gradient(max_corners: i32, quality_level: f64, min_distance: f64, block_size: i32, gradiant_size: i32, use_harris_detector: bool, k: f64) -> Result<types::PtrOfGFTTDetector> {
        unsafe { sys::cv_GFTTDetector_create_int_double_double_int_int_bool_double(max_corners, quality_level, min_distance, block_size, gradiant_size, use_harris_detector, k) }.into_result().map(|ptr| types::PtrOfGFTTDetector { ptr })
    }
    
}

// Generating impl for trait crate::features2d::KAZE
/// Class implementing the KAZE keypoint detector and descriptor extractor, described in [ABD12](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_ABD12) .
///
///
/// Note: AKAZE descriptor can only be used with KAZE or AKAZE keypoints .. [ABD12] KAZE Features. Pablo
/// F. Alcantarilla, Adrien Bartoli and Andrew J. Davison. In European Conference on Computer Vision
/// (ECCV), Fiorenze, Italy, October 2012.
pub trait KAZE: crate::features2d::Feature2DTrait {
    #[inline(always)] fn as_raw_KAZE(&self) -> *mut c_void;
    fn set_extended(&mut self, extended: bool) -> Result<()> {
        unsafe { sys::cv_KAZE_setExtended_bool(self.as_raw_KAZE(), extended) }.into_result()
    }
    
    fn get_extended(&self) -> Result<bool> {
        unsafe { sys::cv_KAZE_getExtended_const(self.as_raw_KAZE()) }.into_result()
    }
    
    fn set_upright(&mut self, upright: bool) -> Result<()> {
        unsafe { sys::cv_KAZE_setUpright_bool(self.as_raw_KAZE(), upright) }.into_result()
    }
    
    fn get_upright(&self) -> Result<bool> {
        unsafe { sys::cv_KAZE_getUpright_const(self.as_raw_KAZE()) }.into_result()
    }
    
    fn set_threshold(&mut self, threshold: f64) -> Result<()> {
        unsafe { sys::cv_KAZE_setThreshold_double(self.as_raw_KAZE(), threshold) }.into_result()
    }
    
    fn get_threshold(&self) -> Result<f64> {
        unsafe { sys::cv_KAZE_getThreshold_const(self.as_raw_KAZE()) }.into_result()
    }
    
    fn set_n_octaves(&mut self, octaves: i32) -> Result<()> {
        unsafe { sys::cv_KAZE_setNOctaves_int(self.as_raw_KAZE(), octaves) }.into_result()
    }
    
    fn get_n_octaves(&self) -> Result<i32> {
        unsafe { sys::cv_KAZE_getNOctaves_const(self.as_raw_KAZE()) }.into_result()
    }
    
    fn set_n_octave_layers(&mut self, octave_layers: i32) -> Result<()> {
        unsafe { sys::cv_KAZE_setNOctaveLayers_int(self.as_raw_KAZE(), octave_layers) }.into_result()
    }
    
    fn get_n_octave_layers(&self) -> Result<i32> {
        unsafe { sys::cv_KAZE_getNOctaveLayers_const(self.as_raw_KAZE()) }.into_result()
    }
    
    fn set_diffusivity(&mut self, diff: i32) -> Result<()> {
        unsafe { sys::cv_KAZE_setDiffusivity_int(self.as_raw_KAZE(), diff) }.into_result()
    }
    
    fn get_diffusivity(&self) -> Result<i32> {
        unsafe { sys::cv_KAZE_getDiffusivity_const(self.as_raw_KAZE()) }.into_result()
    }
    
    fn get_default_name(&self) -> Result<String> {
        unsafe { sys::cv_KAZE_getDefaultName_const(self.as_raw_KAZE()) }.into_result().map(crate::templ::receive_string_mut)
    }
    
}

impl dyn KAZE + '_ {
    /// The KAZE constructor
    ///
    /// ## Parameters
    /// * extended: Set to enable extraction of extended (128-byte) descriptor.
    /// * upright: Set to enable use of upright descriptors (non rotation-invariant).
    /// * threshold: Detector response threshold to accept point
    /// * nOctaves: Maximum octave evolution of the image
    /// * nOctaveLayers: Default number of sublevels per scale level
    /// * diffusivity: Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or
    /// DIFF_CHARBONNIER
    ///
    /// ## C++ default parameters
    /// * extended: false
    /// * upright: false
    /// * threshold: 0.001f
    /// * n_octaves: 4
    /// * n_octave_layers: 4
    /// * diffusivity: KAZE::DIFF_PM_G2
    pub fn create(extended: bool, upright: bool, threshold: f32, n_octaves: i32, n_octave_layers: i32, diffusivity: i32) -> Result<types::PtrOfKAZE> {
        unsafe { sys::cv_KAZE_create_bool_bool_float_int_int_int(extended, upright, threshold, n_octaves, n_octave_layers, diffusivity) }.into_result().map(|ptr| types::PtrOfKAZE { ptr })
    }
    
}

// boxed class cv::KeyPointsFilter
/// A class filters a vector of keypoints.
///
/// Because now it is difficult to provide a convenient interface for all usage scenarios of the
/// keypoints filter class, it has only several needed by now static methods.
pub struct KeyPointsFilter {
    #[doc(hidden)] pub(crate) ptr: *mut c_void
}

impl Drop for KeyPointsFilter {
    fn drop(&mut self) {
        unsafe { sys::cv_KeyPointsFilter_delete(self.ptr) };
    }
}

impl KeyPointsFilter {
    #[inline(always)] pub fn as_raw_KeyPointsFilter(&self) -> *mut c_void { self.ptr }

    pub unsafe fn from_raw_ptr(ptr: *mut c_void) -> Self {
        Self { ptr }
    }
}

unsafe impl Send for KeyPointsFilter {}

impl KeyPointsFilter {
    pub fn default() -> Result<crate::features2d::KeyPointsFilter> {
        unsafe { sys::cv_KeyPointsFilter_KeyPointsFilter() }.into_result().map(|ptr| crate::features2d::KeyPointsFilter { ptr })
    }
    
    pub fn run_by_image_border(keypoints: &mut types::VectorOfKeyPoint, image_size: core::Size, border_size: i32) -> Result<()> {
        unsafe { sys::cv_KeyPointsFilter_runByImageBorder_VectorOfKeyPoint_Size_int(keypoints.as_raw_VectorOfKeyPoint(), image_size, border_size) }.into_result()
    }
    
    ///
    /// ## C++ default parameters
    /// * max_size: FLT_MAX
    pub fn run_by_keypoint_size(keypoints: &mut types::VectorOfKeyPoint, min_size: f32, max_size: f32) -> Result<()> {
        unsafe { sys::cv_KeyPointsFilter_runByKeypointSize_VectorOfKeyPoint_float_float(keypoints.as_raw_VectorOfKeyPoint(), min_size, max_size) }.into_result()
    }
    
    pub fn run_by_pixels_mask(keypoints: &mut types::VectorOfKeyPoint, mask: &core::Mat) -> Result<()> {
        unsafe { sys::cv_KeyPointsFilter_runByPixelsMask_VectorOfKeyPoint_Mat(keypoints.as_raw_VectorOfKeyPoint(), mask.as_raw_Mat()) }.into_result()
    }
    
    pub fn remove_duplicated(keypoints: &mut types::VectorOfKeyPoint) -> Result<()> {
        unsafe { sys::cv_KeyPointsFilter_removeDuplicated_VectorOfKeyPoint(keypoints.as_raw_VectorOfKeyPoint()) }.into_result()
    }
    
    pub fn remove_duplicated_sorted(keypoints: &mut types::VectorOfKeyPoint) -> Result<()> {
        unsafe { sys::cv_KeyPointsFilter_removeDuplicatedSorted_VectorOfKeyPoint(keypoints.as_raw_VectorOfKeyPoint()) }.into_result()
    }
    
    pub fn retain_best(keypoints: &mut types::VectorOfKeyPoint, npoints: i32) -> Result<()> {
        unsafe { sys::cv_KeyPointsFilter_retainBest_VectorOfKeyPoint_int(keypoints.as_raw_VectorOfKeyPoint(), npoints) }.into_result()
    }
    
}

// Generating impl for trait crate::features2d::MSER
/// Maximally stable extremal region extractor
///
/// The class encapsulates all the parameters of the %MSER extraction algorithm (see [wiki
/// article](http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions)).
///
/// - there are two different implementation of %MSER: one for grey image, one for color image
///
/// - the grey image algorithm is taken from: [nister2008linear](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_nister2008linear) ;  the paper claims to be faster
/// than union-find method; it actually get 1.5~2m/s on my centrino L7200 1.2GHz laptop.
///
/// - the color image algorithm is taken from: [forssen2007maximally](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_forssen2007maximally) ; it should be much slower
/// than grey image method ( 3~4 times ); the chi_table.h file is taken directly from paper's source
/// code which is distributed under GPL.
///
/// - (Python) A complete example showing the use of the %MSER detector can be found at samples/python/mser.py
pub trait MSER: crate::features2d::Feature2DTrait {
    #[inline(always)] fn as_raw_MSER(&self) -> *mut c_void;
    /// Detect %MSER regions
    ///
    /// ## Parameters
    /// * image: input image (8UC1, 8UC3 or 8UC4, must be greater or equal than 3x3)
    /// * msers: resulting list of point sets
    /// * bboxes: resulting bounding boxes
    fn detect_regions(&mut self, image: &dyn core::ToInputArray, msers: &mut types::VectorOfVectorOfPoint, bboxes: &mut types::VectorOfRect) -> Result<()> {
        input_array_arg!(image);
        unsafe { sys::cv_MSER_detectRegions__InputArray_VectorOfVectorOfPoint_VectorOfRect(self.as_raw_MSER(), image.as_raw__InputArray(), msers.as_raw_VectorOfVectorOfPoint(), bboxes.as_raw_VectorOfRect()) }.into_result()
    }
    
    fn set_delta(&mut self, delta: i32) -> Result<()> {
        unsafe { sys::cv_MSER_setDelta_int(self.as_raw_MSER(), delta) }.into_result()
    }
    
    fn get_delta(&self) -> Result<i32> {
        unsafe { sys::cv_MSER_getDelta_const(self.as_raw_MSER()) }.into_result()
    }
    
    fn set_min_area(&mut self, min_area: i32) -> Result<()> {
        unsafe { sys::cv_MSER_setMinArea_int(self.as_raw_MSER(), min_area) }.into_result()
    }
    
    fn get_min_area(&self) -> Result<i32> {
        unsafe { sys::cv_MSER_getMinArea_const(self.as_raw_MSER()) }.into_result()
    }
    
    fn set_max_area(&mut self, max_area: i32) -> Result<()> {
        unsafe { sys::cv_MSER_setMaxArea_int(self.as_raw_MSER(), max_area) }.into_result()
    }
    
    fn get_max_area(&self) -> Result<i32> {
        unsafe { sys::cv_MSER_getMaxArea_const(self.as_raw_MSER()) }.into_result()
    }
    
    fn set_pass2_only(&mut self, f: bool) -> Result<()> {
        unsafe { sys::cv_MSER_setPass2Only_bool(self.as_raw_MSER(), f) }.into_result()
    }
    
    fn get_pass2_only(&self) -> Result<bool> {
        unsafe { sys::cv_MSER_getPass2Only_const(self.as_raw_MSER()) }.into_result()
    }
    
    fn get_default_name(&self) -> Result<String> {
        unsafe { sys::cv_MSER_getDefaultName_const(self.as_raw_MSER()) }.into_result().map(crate::templ::receive_string_mut)
    }
    
}

impl dyn MSER + '_ {
    /// Full consturctor for %MSER detector
    ///
    /// ## Parameters
    /// * _delta: it compares ![inline formula](https://latex.codecogs.com/png.latex?%28size_%7Bi%7D-size_%7Bi-delta%7D%29%2Fsize_%7Bi-delta%7D)
    /// * _min_area: prune the area which smaller than minArea
    /// * _max_area: prune the area which bigger than maxArea
    /// * _max_variation: prune the area have similar size to its children
    /// * _min_diversity: for color image, trace back to cut off mser with diversity less than min_diversity
    /// * _max_evolution: for color image, the evolution steps
    /// * _area_threshold: for color image, the area threshold to cause re-initialize
    /// * _min_margin: for color image, ignore too small margin
    /// * _edge_blur_size: for color image, the aperture size for edge blur
    ///
    /// ## C++ default parameters
    /// * _delta: 5
    /// * _min_area: 60
    /// * _max_area: 14400
    /// * _max_variation: 0.25
    /// * _min_diversity: .2
    /// * _max_evolution: 200
    /// * _area_threshold: 1.01
    /// * _min_margin: 0.003
    /// * _edge_blur_size: 5
    pub fn create(_delta: i32, _min_area: i32, _max_area: i32, _max_variation: f64, _min_diversity: f64, _max_evolution: i32, _area_threshold: f64, _min_margin: f64, _edge_blur_size: i32) -> Result<types::PtrOfMSER> {
        unsafe { sys::cv_MSER_create_int_int_int_double_double_int_double_double_int(_delta, _min_area, _max_area, _max_variation, _min_diversity, _max_evolution, _area_threshold, _min_margin, _edge_blur_size) }.into_result().map(|ptr| types::PtrOfMSER { ptr })
    }
    
}

// Generating impl for trait crate::features2d::ORB
/// Class implementing the ORB (*oriented BRIEF*) keypoint detector and descriptor extractor
///
/// described in [RRKB11](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_RRKB11) . The algorithm uses FAST in pyramids to detect stable keypoints, selects
/// the strongest features using FAST or Harris response, finds their orientation using first-order
/// moments and computes the descriptors using BRIEF (where the coordinates of random point pairs (or
/// k-tuples) are rotated according to the measured orientation).
pub trait ORB: crate::features2d::Feature2DTrait {
    #[inline(always)] fn as_raw_ORB(&self) -> *mut c_void;
    fn set_max_features(&mut self, max_features: i32) -> Result<()> {
        unsafe { sys::cv_ORB_setMaxFeatures_int(self.as_raw_ORB(), max_features) }.into_result()
    }
    
    fn get_max_features(&self) -> Result<i32> {
        unsafe { sys::cv_ORB_getMaxFeatures_const(self.as_raw_ORB()) }.into_result()
    }
    
    fn set_scale_factor(&mut self, scale_factor: f64) -> Result<()> {
        unsafe { sys::cv_ORB_setScaleFactor_double(self.as_raw_ORB(), scale_factor) }.into_result()
    }
    
    fn get_scale_factor(&self) -> Result<f64> {
        unsafe { sys::cv_ORB_getScaleFactor_const(self.as_raw_ORB()) }.into_result()
    }
    
    fn set_n_levels(&mut self, nlevels: i32) -> Result<()> {
        unsafe { sys::cv_ORB_setNLevels_int(self.as_raw_ORB(), nlevels) }.into_result()
    }
    
    fn get_n_levels(&self) -> Result<i32> {
        unsafe { sys::cv_ORB_getNLevels_const(self.as_raw_ORB()) }.into_result()
    }
    
    fn set_edge_threshold(&mut self, edge_threshold: i32) -> Result<()> {
        unsafe { sys::cv_ORB_setEdgeThreshold_int(self.as_raw_ORB(), edge_threshold) }.into_result()
    }
    
    fn get_edge_threshold(&self) -> Result<i32> {
        unsafe { sys::cv_ORB_getEdgeThreshold_const(self.as_raw_ORB()) }.into_result()
    }
    
    fn set_first_level(&mut self, first_level: i32) -> Result<()> {
        unsafe { sys::cv_ORB_setFirstLevel_int(self.as_raw_ORB(), first_level) }.into_result()
    }
    
    fn get_first_level(&self) -> Result<i32> {
        unsafe { sys::cv_ORB_getFirstLevel_const(self.as_raw_ORB()) }.into_result()
    }
    
    fn set_wta_k(&mut self, wta_k: i32) -> Result<()> {
        unsafe { sys::cv_ORB_setWTA_K_int(self.as_raw_ORB(), wta_k) }.into_result()
    }
    
    fn get_wta_k(&self) -> Result<i32> {
        unsafe { sys::cv_ORB_getWTA_K_const(self.as_raw_ORB()) }.into_result()
    }
    
    fn set_score_type(&mut self, score_type: i32) -> Result<()> {
        unsafe { sys::cv_ORB_setScoreType_int(self.as_raw_ORB(), score_type) }.into_result()
    }
    
    fn get_score_type(&self) -> Result<i32> {
        unsafe { sys::cv_ORB_getScoreType_const(self.as_raw_ORB()) }.into_result()
    }
    
    fn set_patch_size(&mut self, patch_size: i32) -> Result<()> {
        unsafe { sys::cv_ORB_setPatchSize_int(self.as_raw_ORB(), patch_size) }.into_result()
    }
    
    fn get_patch_size(&self) -> Result<i32> {
        unsafe { sys::cv_ORB_getPatchSize_const(self.as_raw_ORB()) }.into_result()
    }
    
    fn set_fast_threshold(&mut self, fast_threshold: i32) -> Result<()> {
        unsafe { sys::cv_ORB_setFastThreshold_int(self.as_raw_ORB(), fast_threshold) }.into_result()
    }
    
    fn get_fast_threshold(&self) -> Result<i32> {
        unsafe { sys::cv_ORB_getFastThreshold_const(self.as_raw_ORB()) }.into_result()
    }
    
    fn get_default_name(&self) -> Result<String> {
        unsafe { sys::cv_ORB_getDefaultName_const(self.as_raw_ORB()) }.into_result().map(crate::templ::receive_string_mut)
    }
    
}

impl dyn ORB + '_ {
    /// The ORB constructor
    ///
    /// ## Parameters
    /// * nfeatures: The maximum number of features to retain.
    /// * scaleFactor: Pyramid decimation ratio, greater than 1. scaleFactor==2 means the classical
    /// pyramid, where each next level has 4x less pixels than the previous, but such a big scale factor
    /// will degrade feature matching scores dramatically. On the other hand, too close to 1 scale factor
    /// will mean that to cover certain scale range you will need more pyramid levels and so the speed
    /// will suffer.
    /// * nlevels: The number of pyramid levels. The smallest level will have linear size equal to
    /// input_image_linear_size/pow(scaleFactor, nlevels - firstLevel).
    /// * edgeThreshold: This is size of the border where the features are not detected. It should
    /// roughly match the patchSize parameter.
    /// * firstLevel: The level of pyramid to put source image to. Previous layers are filled
    /// with upscaled source image.
    /// * WTA_K: The number of points that produce each element of the oriented BRIEF descriptor. The
    /// default value 2 means the BRIEF where we take a random point pair and compare their brightnesses,
    /// so we get 0/1 response. Other possible values are 3 and 4. For example, 3 means that we take 3
    /// random points (of course, those point coordinates are random, but they are generated from the
    /// pre-defined seed, so each element of BRIEF descriptor is computed deterministically from the pixel
    /// rectangle), find point of maximum brightness and output index of the winner (0, 1 or 2). Such
    /// output will occupy 2 bits, and therefore it will need a special variant of Hamming distance,
    /// denoted as NORM_HAMMING2 (2 bits per bin). When WTA_K=4, we take 4 random points to compute each
    /// bin (that will also occupy 2 bits with possible values 0, 1, 2 or 3).
    /// * scoreType: The default HARRIS_SCORE means that Harris algorithm is used to rank features
    /// (the score is written to KeyPoint::score and is used to retain best nfeatures features);
    /// FAST_SCORE is alternative value of the parameter that produces slightly less stable keypoints,
    /// but it is a little faster to compute.
    /// * patchSize: size of the patch used by the oriented BRIEF descriptor. Of course, on smaller
    /// pyramid layers the perceived image area covered by a feature will be larger.
    /// * fastThreshold: the fast threshold
    ///
    /// ## C++ default parameters
    /// * nfeatures: 500
    /// * scale_factor: 1.2f
    /// * nlevels: 8
    /// * edge_threshold: 31
    /// * first_level: 0
    /// * wta_k: 2
    /// * score_type: ORB::HARRIS_SCORE
    /// * patch_size: 31
    /// * fast_threshold: 20
    pub fn create(nfeatures: i32, scale_factor: f32, nlevels: i32, edge_threshold: i32, first_level: i32, wta_k: i32, score_type: i32, patch_size: i32, fast_threshold: i32) -> Result<types::PtrOfORB> {
        unsafe { sys::cv_ORB_create_int_float_int_int_int_int_int_int_int(nfeatures, scale_factor, nlevels, edge_threshold, first_level, wta_k, score_type, patch_size, fast_threshold) }.into_result().map(|ptr| types::PtrOfORB { ptr })
    }
    
    pub fn default() -> Result<types::PtrOfORB> {
        unsafe { sys::cv_ORB_create() }.into_result().map(|ptr| types::PtrOfORB { ptr })
    }
    
}

// boxed class cv::SimpleBlobDetector
/// Class for extracting blobs from an image. :
///
/// The class implements a simple algorithm for extracting blobs from an image:
///
/// 1.  Convert the source image to binary images by applying thresholding with several thresholds from
/// minThreshold (inclusive) to maxThreshold (exclusive) with distance thresholdStep between
/// neighboring thresholds.
/// 2.  Extract connected components from every binary image by findContours and calculate their
/// centers.
/// 3.  Group centers from several binary images by their coordinates. Close centers form one group that
/// corresponds to one blob, which is controlled by the minDistBetweenBlobs parameter.
/// 4.  From the groups, estimate final centers of blobs and their radiuses and return as locations and
/// sizes of keypoints.
///
/// This class performs several filtrations of returned blobs. You should set filterBy\* to true/false
/// to turn on/off corresponding filtration. Available filtrations:
///
/// *   **By color**. This filter compares the intensity of a binary image at the center of a blob to
/// blobColor. If they differ, the blob is filtered out. Use blobColor = 0 to extract dark blobs
/// and blobColor = 255 to extract light blobs.
/// *   **By area**. Extracted blobs have an area between minArea (inclusive) and maxArea (exclusive).
/// *   **By circularity**. Extracted blobs have circularity
/// (![inline formula](https://latex.codecogs.com/png.latex?%5Cfrac%7B4%2A%5Cpi%2AArea%7D%7Bperimeter%20%2A%20perimeter%7D)) between minCircularity (inclusive) and
/// maxCircularity (exclusive).
/// *   **By ratio of the minimum inertia to maximum inertia**. Extracted blobs have this ratio
/// between minInertiaRatio (inclusive) and maxInertiaRatio (exclusive).
/// *   **By convexity**. Extracted blobs have convexity (area / area of blob convex hull) between
/// minConvexity (inclusive) and maxConvexity (exclusive).
///
/// Default values of parameters are tuned to extract dark circular blobs.
pub struct SimpleBlobDetector {
    #[doc(hidden)] pub(crate) ptr: *mut c_void
}

impl Drop for SimpleBlobDetector {
    fn drop(&mut self) {
        unsafe { sys::cv_SimpleBlobDetector_delete(self.ptr) };
    }
}

impl SimpleBlobDetector {
    #[inline(always)] pub fn as_raw_SimpleBlobDetector(&self) -> *mut c_void { self.ptr }

    pub unsafe fn from_raw_ptr(ptr: *mut c_void) -> Self {
        Self { ptr }
    }
}

unsafe impl Send for SimpleBlobDetector {}

impl core::AlgorithmTrait for SimpleBlobDetector {
    #[inline(always)] fn as_raw_Algorithm(&self) -> *mut c_void { self.ptr }
}

impl crate::features2d::Feature2DTrait for SimpleBlobDetector {
    #[inline(always)] fn as_raw_Feature2D(&self) -> *mut c_void { self.ptr }
}

impl SimpleBlobDetector {
    ///
    /// ## C++ default parameters
    /// * parameters: SimpleBlobDetector::Params()
    pub fn create(parameters: crate::features2d::SimpleBlobDetector_Params) -> Result<types::PtrOfSimpleBlobDetector> {
        unsafe { sys::cv_SimpleBlobDetector_create_SimpleBlobDetector_Params(parameters) }.into_result().map(|ptr| types::PtrOfSimpleBlobDetector { ptr })
    }
    
    pub fn get_default_name(&self) -> Result<String> {
        unsafe { sys::cv_SimpleBlobDetector_getDefaultName_const(self.as_raw_SimpleBlobDetector()) }.into_result().map(crate::templ::receive_string_mut)
    }
    
}

impl SimpleBlobDetector_Params {
    pub fn default() -> Result<crate::features2d::SimpleBlobDetector_Params> {
        unsafe { sys::cv_SimpleBlobDetector_Params_Params() }.into_result()
    }
    
    pub fn read(self, _fn: &core::FileNode) -> Result<()> {
        unsafe { sys::cv_SimpleBlobDetector_Params_read_FileNode(self, _fn.as_raw_FileNode()) }.into_result()
    }
    
    pub fn write(self, fs: &mut core::FileStorage) -> Result<()> {
        unsafe { sys::cv_SimpleBlobDetector_Params_write_const_FileStorage(self, fs.as_raw_FileStorage()) }.into_result()
    }
    
}