1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
use traitgraph::interface::{GraphBase, NodeOrEdge, StaticGraph};
use traitgraph::walks::{EdgeWalk, NodeWalk};
use traitgraph_algo::traversal::univocal_traversal::UnivocalIterator;

/// Functions for node-centric omnitig-like walks.
/// Since this is an extension trait, it only contains default-implemented functions.
pub trait NodeOmnitigLikeExt<Graph: GraphBase, NodeSubwalk: NodeWalk<Graph, NodeSubwalk> + ?Sized>:
    NodeWalk<Graph, NodeSubwalk>
{
    /// Computes the trivial heart of the walk, or returns `None` if the walk is non-trivial.
    /// The heart is returned as the index of the last split node and the index of the first join node of the walk.
    /// These are not part of the heart.
    fn compute_trivial_heart(&self, graph: &Graph) -> Option<(usize, usize)>
    where
        Graph: StaticGraph,
    {
        let mut last_split = 0;
        let mut first_join = self.len() - 1;
        for (i, &node) in self.iter().enumerate().take(self.len() - 1).skip(1) {
            if graph.is_split_node(node) {
                last_split = last_split.max(i);
            }
            if graph.is_join_node(node) {
                first_join = first_join.min(i);
            }
        }

        if last_split < first_join
            && (last_split > 0 || first_join < self.len() - 1 || self.len() == 2)
        {
            Some((last_split, first_join))
        } else {
            None
        }
    }

    /// Compute the amount of nodes in the trivial heart, or returns `None` if the walk is non-trivial.
    /// Recall that a heart is a walk from arc to arc.
    fn compute_trivial_heart_node_len(&self, graph: &Graph) -> Option<usize>
    where
        Graph: StaticGraph,
    {
        if let Some((start, end)) = self.compute_trivial_heart(graph) {
            Some(end - start - 1)
        } else {
            None
        }
    }

    /// Returns true if this walk is non-trivial.
    fn is_non_trivial(&self, graph: &Graph) -> bool
    where
        Graph: StaticGraph,
    {
        self.compute_trivial_heart(graph).is_none()
    }

    /// Computes the univocal extension of this walk.
    /// That is the concatenation LWR, where W is the walk, L the longest R-univocal walk to the first node of W and R the longest univocal walk from the last node of W.
    fn compute_univocal_extension<ResultWalk: From<Vec<Graph::NodeIndex>>>(
        &self,
        graph: &Graph,
    ) -> ResultWalk
    where
        Graph: StaticGraph,
    {
        self.compute_univocal_extension_with_original_offset(graph)
            .1
    }

    /// Computes the univocal extension of this walk.
    /// That is the concatenation LWR, where W is the walk, L the longest R-univocal walk to the first node of W and R the longest univocal walk from the last node of W.
    /// This method handles not strongly connected graphs by disallowing L and R to repeat nodes.
    fn compute_univocal_extension_non_scc<ResultWalk: From<Vec<Graph::NodeIndex>>>(
        &self,
        graph: &Graph,
    ) -> ResultWalk
    where
        Graph: StaticGraph,
    {
        self.compute_univocal_extension_with_original_offset_non_scc(graph)
            .1
    }

    /// Computes the univocal extension of this walk.
    /// That is the concatenation LWR, where W is the walk, L the longest R-univocal walk to the first node of W and R the longest univocal walk from the last node of W.
    ///
    /// Additionally to the univocal extension, this function returns the offset of the original walk in the univocal extension as usize.
    fn compute_univocal_extension_with_original_offset<ResultWalk: From<Vec<Graph::NodeIndex>>>(
        &self,
        graph: &Graph,
    ) -> (usize, ResultWalk)
    where
        Graph: StaticGraph,
    {
        debug_assert!(
            !self.is_empty(),
            "Cannot compute the univocal extension of an empty walk."
        );

        let mut result = Vec::new();
        for node_or_edge in UnivocalIterator::new_backward_without_start(
            graph,
            NodeOrEdge::Node(*self.first().unwrap()),
        ) {
            match node_or_edge {
                NodeOrEdge::Node(node) => {
                    if &node == self.first().unwrap() {
                        break;
                    } else {
                        result.push(node)
                    }
                }
                NodeOrEdge::Edge(_) => {}
            }
        }

        result.reverse();
        let original_offset = result.len();
        result.extend(self.iter());

        for node_or_edge in UnivocalIterator::new_forward_without_start(
            graph,
            NodeOrEdge::Node(*self.last().unwrap()),
        ) {
            match node_or_edge {
                NodeOrEdge::Node(node) => {
                    if &node == self.last().unwrap() {
                        break;
                    } else {
                        result.push(node)
                    }
                }
                NodeOrEdge::Edge(_) => {}
            }
        }

        (original_offset, ResultWalk::from(result))
    }

    /// Computes the univocal extension of this walk.
    /// That is the concatenation LWR, where W is the walk, L the longest R-univocal walk to the first node of W and R the longest univocal walk from the last node of W.
    /// This method handles not strongly connected graphs by disallowing L and R to repeat nodes.
    ///
    /// Additionally to the univocal extension, this function returns the offset of the original walk in the univocal extension as usize.
    fn compute_univocal_extension_with_original_offset_non_scc<
        ResultWalk: From<Vec<Graph::NodeIndex>>,
    >(
        &self,
        graph: &Graph,
    ) -> (usize, ResultWalk)
    where
        Graph: StaticGraph,
    {
        debug_assert!(
            !self.is_empty(),
            "Cannot compute the univocal extension of an empty walk."
        );

        let mut result = Vec::new();
        for node_or_edge in UnivocalIterator::new_backward_without_start(
            graph,
            NodeOrEdge::Node(*self.first().unwrap()),
        ) {
            match node_or_edge {
                NodeOrEdge::Node(node) => {
                    if &node == self.first().unwrap() || result.contains(&node) {
                        break;
                    } else {
                        result.push(node)
                    }
                }
                NodeOrEdge::Edge(_) => {}
            }
        }

        result.reverse();
        let original_offset = result.len();
        result.extend(self.iter());
        let right_wing_offset = result.len();

        for node_or_edge in UnivocalIterator::new_forward_without_start(
            graph,
            NodeOrEdge::Node(*self.last().unwrap()),
        ) {
            match node_or_edge {
                NodeOrEdge::Node(node) => {
                    if &node == self.last().unwrap() || result[right_wing_offset..].contains(&node)
                    {
                        break;
                    } else {
                        result.push(node)
                    }
                }
                NodeOrEdge::Edge(_) => {}
            }
        }

        (original_offset, ResultWalk::from(result))
    }
}

/// Functions for edge-centric omnitig-like walks.
/// Since this is an extension trait, it only contains default-implemented functions.
pub trait EdgeOmnitigLikeExt<Graph: GraphBase, EdgeSubwalk: EdgeWalk<Graph, EdgeSubwalk> + ?Sized>:
    EdgeWalk<Graph, EdgeSubwalk>
{
    /// Computes the trivial heart of the walk, or returns `None` if the walk is non-trivial.
    /// The heart is returned as the index of the last split arc and the index of the first join arc of the walk.
    fn compute_trivial_heart(&self, graph: &Graph) -> Option<(usize, usize)>
    where
        Graph: StaticGraph,
    {
        let mut last_split = 0;
        let mut first_join = self.len() - 1;
        for (i, &edge) in self.iter().enumerate() {
            if graph.is_split_edge(edge) {
                last_split = last_split.max(i);
            }
            if graph.is_join_edge(edge) {
                first_join = first_join.min(i);
            }
        }

        if last_split <= first_join {
            Some((last_split, first_join))
        } else {
            None
        }
    }

    /// Compute the amount of edges in the trivial heart, or returns `None` if the walk is non-trivial.
    /// Recall that a heart is a walk from arc to arc.
    fn compute_trivial_heart_edge_len(&self, graph: &Graph) -> Option<usize>
    where
        Graph: StaticGraph,
    {
        if let Some((start, end)) = self.compute_trivial_heart(graph) {
            Some(end - start + 1)
        } else {
            None
        }
    }

    /// Returns true if this walk is non-trivial.
    fn is_non_trivial(&self, graph: &Graph) -> bool
    where
        Graph: StaticGraph,
    {
        self.compute_trivial_heart(graph).is_none()
    }

    /// Compute the univocal extension of a walk.
    /// That is the concatenation LWR, where W is the walk, L the longest R-univocal walk to the first edge of W and R the longest univocal walk from the last edge of W.
    fn compute_univocal_extension<ResultWalk: From<Vec<Graph::EdgeIndex>>>(
        &self,
        graph: &Graph,
    ) -> ResultWalk
    where
        Graph: StaticGraph,
    {
        self.compute_univocal_extension_with_original_offset(graph)
            .1
    }

    /// Compute the univocal extension of a walk.
    /// That is the concatenation LWR, where W is the walk, L the longest R-univocal walk to the first edge of W and R the longest univocal walk from the last edge of W.
    /// This variant handles not strongly connected graphs by forbidding L and R to repeat edges.
    fn compute_univocal_extension_non_scc<ResultWalk: From<Vec<Graph::EdgeIndex>>>(
        &self,
        graph: &Graph,
    ) -> ResultWalk
    where
        Graph: StaticGraph,
    {
        self.compute_univocal_extension_with_original_offset_non_scc(graph)
            .1
    }

    /// Compute the univocal extension of a walk.
    /// That is the concatenation LWR, where W is the walk, L the longest R-univocal walk to the first edge of W and R the longest univocal walk from the last edge of W.
    ///
    /// Additionally to the univocal extension, this function returns the offset of the original walk in the univocal extension as usize.
    fn compute_univocal_extension_with_original_offset<ResultWalk: From<Vec<Graph::EdgeIndex>>>(
        &self,
        graph: &Graph,
    ) -> (usize, ResultWalk)
    where
        Graph: StaticGraph,
    {
        debug_assert!(
            !self.is_empty(),
            "Cannot compute the univocal extension of an empty walk."
        );

        let mut result = Vec::new();
        for node_or_edge in UnivocalIterator::new_backward_without_start(
            graph,
            NodeOrEdge::Edge(*self.first().unwrap()),
        ) {
            match node_or_edge {
                NodeOrEdge::Node(_) => {}
                NodeOrEdge::Edge(edge) => {
                    if &edge == self.first().unwrap() {
                        break;
                    } else {
                        result.push(edge)
                    }
                }
            }
        }

        result.reverse();
        let original_offset = result.len();
        result.extend(self.iter());

        for node_or_edge in UnivocalIterator::new_forward_without_start(
            graph,
            NodeOrEdge::Edge(*self.last().unwrap()),
        ) {
            match node_or_edge {
                NodeOrEdge::Node(_) => {}
                NodeOrEdge::Edge(edge) => {
                    if &edge == self.last().unwrap() {
                        break;
                    } else {
                        result.push(edge)
                    }
                }
            }
        }

        (original_offset, ResultWalk::from(result))
    }

    /// Compute the univocal extension of a walk.
    /// That is the concatenation LWR, where W is the walk, L the longest R-univocal walk to the first edge of W and R the longest univocal walk from the last edge of W.
    /// This variant handles not strongly connected graphs by forbidding L and R to repeat edges.
    ///
    /// Additionally to the univocal extension, this function returns the offset of the original walk in the univocal extension as usize.
    fn compute_univocal_extension_with_original_offset_non_scc<
        ResultWalk: From<Vec<Graph::EdgeIndex>>,
    >(
        &self,
        graph: &Graph,
    ) -> (usize, ResultWalk)
    where
        Graph: StaticGraph,
    {
        debug_assert!(
            !self.is_empty(),
            "Cannot compute the univocal extension of an empty walk."
        );

        let mut result = Vec::new();
        for node_or_edge in UnivocalIterator::new_backward_without_start(
            graph,
            NodeOrEdge::Edge(*self.first().unwrap()),
        ) {
            match node_or_edge {
                NodeOrEdge::Node(_) => {}
                NodeOrEdge::Edge(edge) => {
                    if edge == *self.last().unwrap() || result.contains(&edge) {
                        break;
                    } else {
                        result.push(edge);
                    }
                }
            }
        }

        result.reverse();
        let original_offset = result.len();
        result.extend(self.iter());

        for node_or_edge in UnivocalIterator::new_forward_without_start(
            graph,
            NodeOrEdge::Edge(*self.last().unwrap()),
        ) {
            match node_or_edge {
                NodeOrEdge::Node(_) => {}
                NodeOrEdge::Edge(edge) => {
                    if edge == *self.first().unwrap()
                        || result[original_offset + self.len()..].contains(&edge)
                    {
                        break;
                    } else {
                        result.push(edge);
                    }
                }
            }
        }

        (original_offset, ResultWalk::from(result))
    }
}

impl<
        Graph: GraphBase,
        Walk: NodeWalk<Graph, Subwalk> + ?Sized,
        Subwalk: NodeWalk<Graph, Subwalk> + ?Sized,
    > NodeOmnitigLikeExt<Graph, Subwalk> for Walk
{
}

impl<
        Graph: GraphBase,
        Walk: EdgeWalk<Graph, Subwalk> + ?Sized,
        Subwalk: EdgeWalk<Graph, Subwalk> + ?Sized,
    > EdgeOmnitigLikeExt<Graph, Subwalk> for Walk
{
}

#[cfg(test)]
mod tests {
    use crate::walks::EdgeOmnitigLikeExt;
    use traitgraph::implementation::petgraph_impl::PetGraph;
    use traitgraph::interface::MutableGraphContainer;

    #[test]
    fn test_edge_hearts_petersen() {
        let mut graph = PetGraph::new();
        let n: Vec<_> = (0..2).map(|i| graph.add_node(i)).collect();
        let e = vec![
            graph.add_edge(n[0], n[1], 100),
            graph.add_edge(n[1], n[0], 101),
            graph.add_edge(n[1], n[0], 102),
        ];

        let tests = [
            (vec![e[1], e[0], e[2]], None),
            (vec![e[2], e[0], e[1]], None),
            (vec![e[0], e[1], e[0]], Some((1, 1))),
            (vec![e[1], e[0]], Some((0, 0))),
            (vec![e[0], e[1]], Some((1, 1))),
            (vec![e[0], e[2], e[0]], Some((1, 1))),
            (vec![e[2], e[0]], Some((0, 0))),
            (vec![e[0], e[2]], Some((1, 1))),
        ];

        for (walk, trivial_heart) in tests {
            assert_eq!(walk.compute_trivial_heart(&graph), trivial_heart);
        }
    }
}