1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
use std::{
    cmp::min,
    collections::HashSet,
    str::{from_utf8, Utf8Error},
};

use crate::{
    columnar_bulk_inserter::BoundInputSlice,
    fixed_sized::Pod,
    handles::{CDataMut, Statement, StatementRef},
    parameter::WithDataType,
    result_set_metadata::utf8_display_sizes,
    Error, ResultSetMetadata, RowSetBuffer,
};

use super::{Indicator, TextColumn};

impl<C: ColumnBuffer> ColumnarBuffer<C> {
    /// Create a new instance from columns with unique indicies. Capacity of the buffer will be the
    /// minimum capacity of the columns. The constructed buffer is always empty (i.e. the number of
    /// valid rows is considered to be zero).
    ///
    /// You do not want to call this constructor directly unless you want to provide your own buffer
    /// implentation. Most users of this crate may want to use the constructors like
    /// [`crate::buffers::ColumnarAnyBuffer::from_description`] or
    /// [`crate::buffers::TextRowSet::from_max_str_lens`] instead.
    pub fn new(columns: Vec<(u16, C)>) -> Self {
        // Assert capacity
        let capacity = columns
            .iter()
            .map(|(_, col)| col.capacity())
            .min()
            .unwrap_or(0);

        // Assert uniqueness of indices
        let mut indices = HashSet::new();
        if columns
            .iter()
            .any(move |&(col_index, _)| !indices.insert(col_index))
        {
            panic!("Column indices must be unique.")
        }

        unsafe { Self::new_unchecked(capacity, columns) }
    }

    /// # Safety
    ///
    /// * Indices must be unique
    /// * Columns all must have enough `capacity`.
    pub unsafe fn new_unchecked(capacity: usize, columns: Vec<(u16, C)>) -> Self {
        ColumnarBuffer {
            num_rows: Box::new(0),
            row_capacity: capacity,
            columns,
        }
    }

    /// Number of valid rows in the buffer.
    pub fn num_rows(&self) -> usize {
        *self.num_rows
    }

    /// Return the number of columns in the row set.
    pub fn num_cols(&self) -> usize {
        self.columns.len()
    }

    /// Use this method to gain read access to the actual column data.
    ///
    /// # Parameters
    ///
    /// * `buffer_index`: Please note that the buffer index is not identical to the ODBC column
    ///   index. For once it is zero based. It also indexes the buffer bound, and not the columns of
    ///   the output result set. This is important, because not every column needs to be bound. Some
    ///   columns may simply be ignored. That being said, if every column of the output is bound in
    ///   the buffer, in the same order in which they are enumerated in the result set, the
    ///   relationship between column index and buffer index is `buffer_index = column_index - 1`.
    pub fn column(&self, buffer_index: usize) -> C::View<'_> {
        self.columns[buffer_index].1.view(*self.num_rows)
    }
}

unsafe impl<C> RowSetBuffer for ColumnarBuffer<C>
where
    C: ColumnBuffer,
{
    fn bind_type(&self) -> usize {
        0 // Specify columnar binding
    }

    fn row_array_size(&self) -> usize {
        self.row_capacity
    }

    fn mut_num_fetch_rows(&mut self) -> &mut usize {
        self.num_rows.as_mut()
    }

    unsafe fn bind_colmuns_to_cursor(&mut self, mut cursor: StatementRef<'_>) -> Result<(), Error> {
        for (col_number, column) in &mut self.columns {
            cursor.bind_col(*col_number, column).into_result(&cursor)?;
        }
        Ok(())
    }

    fn has_truncated_values(&self) -> bool {
        self.columns
            .iter()
            .any(|col_buffer| col_buffer.1.has_truncated_values(*self.num_rows))
    }
}

/// A columnar buffer intended to be bound with [crate::Cursor::bind_buffer] in order to obtain
/// results from a cursor.
///
/// This buffer is designed to be versatile. It supports a wide variety of usage scenarios. It is
/// efficient in retrieving data, but expensive to allocate, as columns are allocated separately.
/// This is required in order to efficiently allow for rebinding columns, if this buffer is used to
/// provide array input parameters those maximum size is not known in advance.
///
/// Most applications should find the overhead negligible, especially if instances are reused.
pub struct ColumnarBuffer<C> {
    /// A mutable pointer to num_rows_fetched is passed to the C-API. It is used to write back the
    /// number of fetched rows. `num_rows_fetched` is heap allocated, so the pointer is not
    /// invalidated, even if the `ColumnarBuffer` instance is moved in memory.
    num_rows: Box<usize>,
    /// aka: batch size, row array size
    row_capacity: usize,
    /// Column index and bound buffer
    columns: Vec<(u16, C)>,
}

/// A buffer for a single column intended to be used together with [`ColumnarBuffer`].
///
/// # Safety
///
/// Views must not allow access to unintialized / invalid rows.
pub unsafe trait ColumnBuffer: CDataMut {
    /// Immutable view on the column data. Used in safe abstractions. User must not be able to
    /// access uninitialized or invalid memory of the buffer through this interface.
    type View<'a>
    where
        Self: 'a;

    /// Num rows may not exceed the actually amount of valid num_rows filled be the ODBC API. The
    /// column buffer does not know how many elements were in the last row group, and therefore can
    /// not guarantee the accessed element to be valid and in a defined state. It also can not panic
    /// on accessing an undefined element.
    fn view(&self, valid_rows: usize) -> Self::View<'_>;

    /// Fills the column with the default representation of values, between `from` and `to` index.
    fn fill_default(&mut self, from: usize, to: usize);

    /// Current capacity of the column
    fn capacity(&self) -> usize;

    /// `true` if any value is truncated in the range [0, num_rows).
    ///
    /// After fetching data we may want to know if any value has been truncated due to the buffer
    /// not being able to hold elements of that size. This method checks the indicator buffer
    /// element wise.
    fn has_truncated_values(&self, num_rows: usize) -> bool;
}

unsafe impl<T> ColumnBuffer for WithDataType<T>
where
    T: ColumnBuffer,
{
    type View<'a> = T::View<'a> where T: 'a;

    fn view(&self, valid_rows: usize) -> T::View<'_> {
        self.value.view(valid_rows)
    }

    fn fill_default(&mut self, from: usize, to: usize) {
        self.value.fill_default(from, to)
    }

    fn capacity(&self) -> usize {
        self.value.capacity()
    }

    fn has_truncated_values(&self, num_rows: usize) -> bool {
        self.value.has_truncated_values(num_rows)
    }
}

unsafe impl<'a, T> BoundInputSlice<'a> for WithDataType<T>
where
    T: BoundInputSlice<'a>,
{
    type SliceMut = T::SliceMut;

    unsafe fn as_view_mut(
        &'a mut self,
        parameter_index: u16,
        stmt: StatementRef<'a>,
    ) -> Self::SliceMut {
        self.value.as_view_mut(parameter_index, stmt)
    }
}

/// This row set binds a string buffer to each column, which is large enough to hold the maximum
/// length string representation for each element in the row set at once.
///
/// # Example
///
/// ```no_run
/// //! A program executing a query and printing the result as csv to standard out. Requires
/// //! `anyhow` and `csv` crate.
///
/// use anyhow::Error;
/// use odbc_api::{buffers::TextRowSet, Cursor, Environment, ConnectionOptions, ResultSetMetadata};
/// use std::{
///     ffi::CStr,
///     io::{stdout, Write},
///     path::PathBuf,
/// };
///
/// /// Maximum number of rows fetched with one row set. Fetching batches of rows is usually much
/// /// faster than fetching individual rows.
/// const BATCH_SIZE: usize = 5000;
///
/// fn main() -> Result<(), Error> {
///     // Write csv to standard out
///     let out = stdout();
///     let mut writer = csv::Writer::from_writer(out);
///
///     // We know this is going to be the only ODBC environment in the entire process, so this is
///     // safe.
///     let environment = unsafe { Environment::new() }?;
///
///     // Connect using a DSN. Alternatively we could have used a connection string
///     let mut connection = environment.connect(
///         "DataSourceName",
///         "Username",
///         "Password",
///         ConnectionOptions::default(),
///     )?;
///
///     // Execute a one of query without any parameters.
///     match connection.execute("SELECT * FROM TableName", ())? {
///         Some(mut cursor) => {
///             // Write the column names to stdout
///             let mut headline : Vec<String> = cursor.column_names()?.collect::<Result<_,_>>()?;
///             writer.write_record(headline)?;
///
///             // Use schema in cursor to initialize a text buffer large enough to hold the largest
///             // possible strings for each column up to an upper limit of 4KiB
///             let mut buffers = TextRowSet::for_cursor(BATCH_SIZE, &mut cursor, Some(4096))?;
///             // Bind the buffer to the cursor. It is now being filled with every call to fetch.
///             let mut row_set_cursor = cursor.bind_buffer(&mut buffers)?;
///
///             // Iterate over batches
///             while let Some(batch) = row_set_cursor.fetch()? {
///                 // Within a batch, iterate over every row
///                 for row_index in 0..batch.num_rows() {
///                     // Within a row iterate over every column
///                     let record = (0..batch.num_cols()).map(|col_index| {
///                         batch
///                             .at(col_index, row_index)
///                             .unwrap_or(&[])
///                     });
///                     // Writes row as csv
///                     writer.write_record(record)?;
///                 }
///             }
///         }
///         None => {
///             eprintln!(
///                 "Query came back empty. No output has been created."
///             );
///         }
///     }
///
///     Ok(())
/// }
/// ```
pub type TextRowSet = ColumnarBuffer<TextColumn<u8>>;

impl TextRowSet {
    /// The resulting text buffer is not in any way tied to the cursor, other than that its buffer
    /// sizes a tailor fitted to result set the cursor is iterating over.
    ///
    /// This method performs faliable buffer allocations, if no upper bound is set, so you may see
    /// a speedup, by setting an upper bound using `max_str_limit`.
    ///
    ///
    /// # Parameters
    ///
    /// * `batch_size`: The maximum number of rows the buffer is able to hold.
    /// * `cursor`: Used to query the display size for each column of the row set. For character
    ///   data the length in characters is multiplied by 4 in order to have enough space for 4 byte
    ///   utf-8 characters. This is a pessimization for some data sources (e.g. SQLite 3) which do
    ///   interpret the size of a `VARCHAR(5)` column as 5 bytes rather than 5 characters.
    /// * `max_str_limit`: Some queries make it hard to estimate a sensible upper bound and
    ///   sometimes drivers are just not that good at it. This argument allows you to specify an
    ///   upper bound for the length of character data. Any size reported by the driver is capped to
    ///   this value. In case the database returns a size of 0 (which some systems used to indicate)
    ///   arbitrariely large values, the element size is set to upper bound.
    pub fn for_cursor(
        batch_size: usize,
        cursor: &mut impl ResultSetMetadata,
        max_str_limit: Option<usize>,
    ) -> Result<TextRowSet, Error> {
        let buffers = utf8_display_sizes(cursor)?
            .enumerate()
            .map(|(buffer_index, reported_len)| {
                let buffer_index = buffer_index as u16;
                let col_index = buffer_index + 1;
                let max_str_len = reported_len?;
                let buffer = if let Some(upper_bound) = max_str_limit {
                    let max_str_len = if max_str_len == 0 {
                        upper_bound
                    } else {
                        min(max_str_len, upper_bound)
                    };
                    TextColumn::new(batch_size, max_str_len)
                } else {
                    TextColumn::try_new(batch_size, max_str_len).map_err(|source| {
                        Error::TooLargeColumnBufferSize {
                            buffer_index,
                            num_elements: source.num_elements,
                            element_size: source.element_size,
                        }
                    })?
                };

                Ok((col_index, buffer))
            })
            .collect::<Result<_, _>>()?;
        Ok(TextRowSet {
            row_capacity: batch_size,
            num_rows: Box::new(0),
            columns: buffers,
        })
    }

    /// Creates a text buffer large enough to hold `batch_size` rows with one column for each item
    /// `max_str_lengths` of respective size.
    pub fn from_max_str_lens(
        row_capacity: usize,
        max_str_lengths: impl IntoIterator<Item = usize>,
    ) -> Result<Self, Error> {
        let buffers = max_str_lengths
            .into_iter()
            .enumerate()
            .map(|(index, max_str_len)| {
                Ok((
                    (index + 1).try_into().unwrap(),
                    TextColumn::try_new(row_capacity, max_str_len)
                        .map_err(|source| source.add_context(index.try_into().unwrap()))?,
                ))
            })
            .collect::<Result<_, _>>()?;
        Ok(TextRowSet {
            row_capacity,
            num_rows: Box::new(0),
            columns: buffers,
        })
    }

    /// Access the element at the specified position in the row set.
    pub fn at(&self, buffer_index: usize, row_index: usize) -> Option<&[u8]> {
        assert!(row_index < *self.num_rows);
        self.columns[buffer_index].1.value_at(row_index)
    }

    /// Access the element at the specified position in the row set.
    pub fn at_as_str(&self, col_index: usize, row_index: usize) -> Result<Option<&str>, Utf8Error> {
        self.at(col_index, row_index).map(from_utf8).transpose()
    }

    /// Indicator value at the specified position. Useful to detect truncation of data.
    ///
    /// # Example
    ///
    /// ```
    /// use odbc_api::buffers::{Indicator, TextRowSet};
    ///
    /// fn is_truncated(buffer: &TextRowSet, col_index: usize, row_index: usize) -> bool {
    ///     match buffer.indicator_at(col_index, row_index) {
    ///         // There is no value, therefore there is no value not fitting in the column buffer.
    ///         Indicator::Null => false,
    ///         // The value did not fit into the column buffer, we do not even know, by how much.
    ///         Indicator::NoTotal => true,
    ///         Indicator::Length(total_length) => {
    ///             // If the maximum string length is shorter than the values total length, the
    ///             // has been truncated to fit into the buffer.
    ///             buffer.max_len(col_index) < total_length
    ///         }
    ///     }
    /// }
    /// ```
    pub fn indicator_at(&self, buf_index: usize, row_index: usize) -> Indicator {
        assert!(row_index < *self.num_rows);
        self.columns[buf_index].1.indicator_at(row_index)
    }

    /// Maximum length in bytes of elements in a column.
    pub fn max_len(&self, buf_index: usize) -> usize {
        self.columns[buf_index].1.max_len()
    }
}

unsafe impl<T> ColumnBuffer for Vec<T>
where
    T: Pod,
{
    type View<'a> = &'a [T];

    fn view(&self, valid_rows: usize) -> &[T] {
        &self[..valid_rows]
    }

    fn fill_default(&mut self, from: usize, to: usize) {
        for item in &mut self[from..to] {
            *item = Default::default();
        }
    }

    fn capacity(&self) -> usize {
        self.len()
    }

    fn has_truncated_values(&self, _num_rows: usize) -> bool {
        false
    }
}

#[cfg(test)]
mod tests {

    use crate::buffers::{BufferDesc, ColumnarAnyBuffer};

    #[test]
    #[should_panic(expected = "Column indices must be unique.")]
    fn assert_unique_column_indices() {
        let bd = BufferDesc::I32 { nullable: false };
        ColumnarAnyBuffer::from_descs_and_indices(1, [(1, bd), (2, bd), (1, bd)].iter().cloned());
    }
}