1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#![deny(missing_docs)]
#![cfg_attr(feature = "no-std", no_std)]

//! [ocaml-rs](https://github.com/zsdhipko/ocaml-rs) is a library for directly interacting with the C OCaml runtime, in Rust.
//!
//! The OCaml manual chapter [Interfacing C with OCaml](https://caml.inria.fr/pub/docs/manual-ocaml/intfc.html) does
//! a great job of explaining low-level details about how to safely interact with the OCaml runtime. This crate aims to
//! be a slightly higher-level of abstraction, with minimal added overhead.
//!
//! ## Getting started
//!
//! Take a look at the [ocaml-rust-starter](http://github.com/zshipko/ocaml-rust-starter) project for a basic example to help get started with `ocaml-rs`.
//!
//! ## Examples
//!
//! ```rust,no_run
//! // Automatically derive `ToValue` and `FromValue`
//! #[cfg(feature = "derive")]
//! #[derive(ocaml::ToValue, ocaml::FromValue)]
//! struct Example<'a> {
//!     name: &'a str,
//!     i: ocaml::Int,
//! }
//!
//! #[cfg(feature = "derive")]
//! #[ocaml::func]
//! pub fn incr_example(mut e: Example<'static>) -> Example<'static> {
//!     e.i += 1;
//!     e
//! }
//!
//! #[cfg(feature = "derive")]
//! #[ocaml::func]
//! pub fn build_tuple(i: ocaml::Int) -> (ocaml::Int, ocaml::Int, ocaml::Int) {
//!     (i + 1, i + 2, i + 3)
//! }
//!
//! #[cfg(feature = "derive")]
//! #[ocaml::func]
//! pub fn average(arr: ocaml::Array<f64>) -> Result<f64, ocaml::Error> {
//!     let mut sum = 0f64;
//!
//!     for i in 0..arr.len() {
//!         sum += arr.get_double(i)?;
//!     }
//!
//!     Ok(sum / arr.len() as f64)
//! }
//!
//! // A `native_func` must take `ocaml::Value` for every argument or `f64` for
//! // every unboxed argument and return an `ocaml::Value` (or `f64`).
//! // `native_func` has minimal overhead compared to wrapping with `func`
//! #[cfg(feature = "derive")]
//! #[ocaml::native_func]
//! pub fn incr(value: ocaml::Value) -> ocaml::Value {
//!     let i = value.int_val();
//!     ocaml::Value::int(i + 1)
//! }
//!
//! // This is equivalent to:
//! #[no_mangle]
//! pub extern "C" fn incr2(value: ocaml::Value) -> ocaml::Value {
//!     ocaml::body!((value) {
//!         let i = value.int_val();
//!         ocaml::Value::int( i + 1)
//!     })
//! }
//!
//! // `ocaml::native_func` is responsible for:
//! // - Ensures that #[no_mangle] and extern "C" are added, in addition to wrapping
//! // - Wraps the function body using `ocaml::body!`
//!
//! // Finally, if your function is marked [@@unboxed] and [@@noalloc] in OCaml then you can avoid
//! // boxing altogether for f64 arguments using a plain C function and a bytecode function
//! // definition:
//! #[no_mangle]
//! pub extern "C" fn incrf(input: f64) -> f64 {
//!     input + 1.0
//! }
//!
//! #[cfg(feature = "derive")]
//! #[ocaml::bytecode_func]
//! pub fn incrf_bytecode(input: f64) -> f64 {
//!     incrf(input)
//! }
//! ```
//!
//! The OCaml stubs would look like this:
//!
//! ```ocaml
//! type example = {
//!     name: string;
//!     i: int;
//! }
//!
//! external incr_example: example -> example = "incr_example"
//! external build_tuple: int -> int * int * int = "build_tuple"
//! external average: float array -> float = "average"
//! external incr: int -> int = "incr"
//! external incr2: int -> int = "incr2"
//! external incrf: float -> float = "incrf_bytecode" "incrf" [@@unboxed] [@@noalloc]
//! ```

#[cfg(all(feature = "link", feature = "no-std"))]
std::compile_error!("Cannot use link and no-std features");

/// The `sys` module contains the low-level implementation of the OCaml runtime
pub use ocaml_sys as sys;

#[cfg(feature = "derive")]
pub use ocaml_derive::{
    ocaml_bytecode_func as bytecode_func, ocaml_func as func, ocaml_native_func as native_func,
    FromValue, ToValue,
};

#[macro_use]
mod macros;

mod conv;
mod error;
mod tag;
mod types;
mod util;
mod value;

/// Functions for interacting with the OCaml runtime
pub mod runtime;

/// Custom types, used for allocating Rust values owned by the OCaml garbage collector
pub mod custom;

pub use crate::custom::Custom;
pub use crate::error::{CamlError, Error};
pub use crate::runtime::*;
pub use crate::tag::Tag;
pub use crate::types::{bigarray, Array, List, Pointer};
pub use crate::value::{FromValue, ToValue, Value};

#[cfg(not(feature = "no-std"))]
pub use crate::macros::init_panic_handler;

/// OCaml `float`
pub type Float = f64;

/// Integer type that converts to OCaml `int`
pub type Int = sys::Intnat;

/// Unsigned integer type that converts to OCaml `int`
pub type Uint = sys::Uintnat;

/// Wraps `sys::COMPILER` as `std::process::Command`
#[cfg(not(feature = "no-std"))]
pub fn ocamlopt() -> std::process::Command {
    std::process::Command::new(sys::COMPILER)
}

#[cfg(feature = "link")]
#[cfg(test)]
mod tests;