1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
// Copyright (c) SimpleStaking and Tezedge Contributors
// SPDX-License-Identifier: MIT

#![doc(html_root_url = "https://docs.rs/ocaml-interop/0.5.2")]

//! _Zinc-iron alloy coating is used in parts that need very good corrosion protection._
//!
//! **API IS CONSIDERED UNSTABLE AT THE MOMENT AND IS LIKELY TO CHANGE IN THE FUTURE**
//!
//! [ocaml-interop](https://github.com/simplestaking/ocaml-interop) is an OCaml<->Rust FFI with an emphasis on safety inspired by [caml-oxide](https://github.com/stedolan/caml-oxide) and [ocaml-rs](https://github.com/zshipko/ocaml-rs).
//!
//! ## Table of Contents
//!
//! - [How does it work](#how-does-it-work)
//! - [Usage](#usage)
//!   * [Rules](#rules)
//!     + [Rule 1: The OCaml runtime handle](#rule-1-the-ocaml-runtime-handle)
//!     + [Rule 2: Liveness of OCaml values and rooting](#rule-2-liveness-of-ocaml-values-and-rooting)
//!     + [Rule 3: Liveness and scope of OCaml roots](#rule-3-liveness-and-scope-ocaml-roots)
//!   * [Converting between OCaml and Rust data](#converting-between-ocaml-and-rust-data)
//!     + [`FromOCaml` trait](#fromocaml-trait)
//!     + [`ToOCaml` trait](#toocaml-trait)
//!   * [Calling convention](#calling-convention)
//!   * [OCaml exceptions](#ocaml-exceptions)
//!   * [Calling into OCaml from Rust](#calling-into-ocaml-from-rust)
//!   * [Calling into Rust from OCaml](#calling-into-rust-from-ocaml)
//! - [References and links](#references-and-links)
//!
//! ## How does it work
//!
//! ocaml-interop, just like [caml-oxide](https://github.com/stedolan/caml-oxide), encodes the invariants of OCaml's garbage collector into the rules of Rust's borrow checker. Any violation of these invariants results in a compilation error produced by Rust's borrow checker.
//!
//! ## Usage
//!
//! ### Rules
//!
//! There are a few rules that have to be followed when calling into the OCaml runtime:
//!
//! #### Rule 1: The OCaml runtime handle
//!
//! To interact with the OCaml runtime (be it reading, mutating or allocating values, or to call functions) a reference to the OCaml runtime handle must be available.
//! Any function that interacts with the OCaml runtime takes as a first argument a reference to the OCaml runtime handle.
//!
//! #### Rule 2: Liveness of OCaml values and rooting
//!
//! Rust references to OCaml values become stale after calls into the OCaml runtime and cannot be used again. This is enforced by Rust's borrow checker.
//!
//! To have OCaml values survive across calls into the OCaml runtime, they have to be rooted, and then recovered from a root.
//!
//! Rooting is only possible inside `ocaml_frame!` blocks, which initialize a list of root variables that can be used to root OCaml values.
//!
//! #### Rule 3: Liveness and scope of OCaml roots
//!
//! OCaml roots are only valid inside the [`ocaml_frame!`] that instantiated them, and cannot escape this scope.
//!
//! Example (fails to compile):
//!
//! ```rust,compile_fail
//! # use ocaml_interop::*;
//! # ocaml! {
//! #     fn ocaml_function(arg1: String) -> String;
//! #     fn another_ocaml_function(arg: String);
//! # }
//! # let a_string = "string";
//! # let arg1 = "arg1";
//! # let cr = unsafe { &mut OCamlRuntime::recover_handle() };
//! let escape = ocaml_frame!(cr, (arg1_root), {
//!     let arg1 = arg1.to_ocaml(cr);
//!     let arg1_root = arg1_root.keep(arg1);
//!     let result = ocaml_function(cr, arg1_root, /* ..., argN */);
//!     let s: String = result.to_rust();
//!     // ...
//!     arg1_root
//! });
//! ```
//!
//! In the above example `arg1_root` cannot escape the [`ocaml_frame!`] scope, Rust's borrow checker will complain:
//!
//! ```text,no_run
//! error[E0716]: temporary value dropped while borrowed
//!   --> src/lib.rs:64:14
//!    |
//!    |   let escape = ocaml_frame!(cr, (arg1_root), {
//!    |  _____------___^
//!    | |     |
//!    | |     borrow later stored here
//!    | |     let arg1 = arg1.to_ocaml(cr);
//!    | |     let arg1_root = arg1_root.keep(arg1);
//!    | |     let result = ocaml_function(cr, arg1_root, /* ..., argN */);
//! ...  |
//!    | |     arg1_root
//!    | | });
//!    | |  ^
//!    | |  |
//!    | |__creates a temporary which is freed while still in use
//!    |    temporary value is freed at the end of this statement
//! ```
//!
//! A similar error would happen if a root-variable escaped the frame scope.
//!
//! ### Converting between OCaml and Rust data
//!
//! #### [`FromOCaml`] trait
//!
//! The [`FromOCaml`] trait implements conversion from OCaml values into Rust values, using the `from_ocaml` function.
//!
//! [`OCaml`]`<T>` values have a `to_rust()` method that is usually more convenient than `Type::from_ocaml(ocaml_value)`, and works for any combination that implements the `FromOCaml` trait.
//!
//! [`OCamlRef`]`<T>` values have a `to_rust(cr)` that needs an [`OCamlRuntime`] reference to be passed to it.
//!
//! #### [`ToOCaml`] trait
//!
//! The [`ToOCaml`] trait implements conversion from Rust values into OCaml values, using the `to_ocaml` method. It takes a single parameter that must be a `&mut OCamlRuntime`.
//!
//! A more convenient way to convert Rust values into OCaml values is provided by the [`to_ocaml!`] macro that accepts a root variable as an optional third argument to return a root containing the value.
//!
//! ### Calling convention
//!
//! There are two possible calling conventions in regards to rooting, one with *callee rooted arguments*, and another with *caller rooted arguments*.
//!
//! #### Callee rooted arguments calling convention
//!
//! With this calling convention, values that are arguments to a function call are passed directly. Functions that receive arguments are responsible for rooting them. This is how OCaml's C API and `ocaml-interop` versions before `0.5.0` work.
//!
//! #### Caller rooted arguments calling convention
//!
//! With this calling convention, values that are arguments to a function call must be rooted by the caller. Then instead of the value, it is the root pointing to the value that is passed as an argument. This is how `ocaml-interop` works starting with version `0.5.0`.
//!
//! When a Rust function is called from OCaml, it will receive arguments as `OCamlRef<T>` values, and when a OCaml function is called from Rust, arguments will be passed as `OCamlRef<T>` values.
//!
//! ### OCaml exceptions
//!
//! If an OCaml function called from Rust raises an exception, this will result in a panic.
//!
//! OCaml functions meant to be called from Rust should not raise exceptions to signal errors, but instead return `result` or `option` values, which can then be mapped into `Result` and `Option` values in Rust.
//!
//! ### Calling into OCaml from Rust
//!
//! The following code defines two OCaml functions and registers them using the `Callback.register` mechanism:
//!
//! ```ocaml
//! let increment_bytes bytes first_n =
//!   let limit = (min (Bytes.length bytes) first_n) - 1 in
//!   for i = 0 to limit do
//!     let value = (Bytes.get_uint8 bytes i) + 1 in
//!     Bytes.set_uint8 bytes i value
//!   done;
//!   bytes
//!
//! let twice x = 2 * x
//!
//! let () =
//!   Callback.register "increment_bytes" increment_bytes;
//!   Callback.register "twice" twice
//! ```
//!
//! To be able to call these from Rust, there are a few things that need to be done:
//!
//! - The OCaml runtime has to be initialized. If the driving program is a Rust application, it has to be done explicitly by doing `let runtime = OCamlRuntime::init()`, but if the driving program is an OCaml application, this is not required.
//! - Functions that were exported from the OCaml side with `Callback.register` have to be declared using the [`ocaml!`] macro.
//! - Before the program exist, or once the OCaml runtime is not required anymore, it has to be de-initialized by calling the `shutdown()` method on the OCaml runtime handle.
//!
//! ### Example
//!
//! ```rust,no_run
//! use ocaml_interop::{
//!     ocaml_frame, to_ocaml, FromOCaml, OCaml, OCamlRef, ToOCaml, OCamlRuntime
//! };
//!
//! // To call an OCaml function, it first has to be declared inside an `ocaml!` macro block:
//! mod ocaml_funcs {
//!     use ocaml_interop::{ocaml, OCamlInt};
//!
//!     ocaml! {
//!         // OCaml: `val increment_bytes: bytes -> int -> bytes`
//!         // registered with `Callback.register "increment_bytes" increment_bytes`
//!         pub fn increment_bytes(bytes: String, first_n: OCamlInt) -> String;
//!         // OCaml: `val twice: int -> int`
//!         // registered with `Callback.register "twice" twice`
//!         pub fn twice(num: OCamlInt) -> OCamlInt;
//!     }
//! }
//!
//! fn increment_bytes(
//!     cr: &mut OCamlRuntime,
//!     bytes1: String,
//!     bytes2: String,
//!     first_n: usize,
//! ) -> (String, String) {
//!     // Any calls into the OCaml runtime takes as input a `&mut` reference to an `OCamlRuntime`
//!     // value that is obtained as the result of initializing the OCaml runtime.
//!     // If rooting of OCaml values is needed, a new frame has to be opened by using the
//!     // `ocaml_frame!` macro.
//!     // The first argument to the macro is a reference to an `OCamlRuntime`, followed by a
//!     // list of "root variables" (more on this later). The last argument
//!     // is the block of code that will run inside that frame.
//!     ocaml_frame!(cr, (bytes1_root, bytes2_root), {
//!         // The `ToOCaml` trait provides the `to_ocaml` method to convert Rust
//!         // values into OCaml values.
//!         let ocaml_bytes1: OCaml<String> = bytes1.to_ocaml(cr);
//!
//!         // `ocaml_bytes1` is going to be referenced later, but there calls into the
//!         // OCaml runtime that perform allocations happening before this value is used again.
//!         // Those calls into the OCaml runtime invalidate this reference, so it has to be
//!         // kept alive somehow. To do so, `bytes1_root.keep(ocaml_bytes1)` is used.
//!         // `bytes1_root` is one of the "root variables" that were declared when opening
//!         // this frame.
//!         // Each "root variable" reserves space for a reference that will be tracked by the GC.
//!         // A root variable's `root_var.keep(value)` method returns
//!         // an value-containing root that is going to be valid during the scope of
//!         // the current `ocaml_frame!` block. Later `cr.get(value_root)` can be used
//!         // to recover the original OCaml value.
//!         let bytes1_root: OCamlRef<String> = bytes1_root.keep(ocaml_bytes1);
//!
//!         // Same as above. Here the convenience macro [`to_ocaml!`] is used.
//!         // It works like `value.to_ocaml(cr)`, but has an optional third argument that
//!         // can be a root variable to perform the rooting.
//!         // This variation returns an `OCamlRef` value instead of an `OCaml` one.
//!         let bytes2_root = to_ocaml!(cr, bytes2, bytes2_root);
//!
//!         // Rust `i64` integers can be converted into OCaml fixnums with `OCaml::of_i64`
//!         // and `OCaml::of_i64_unchecked`.
//!         // Such conversion doesn't require any allocation on the OCaml side, and doesn't
//!         // invalidate other `OCaml<T>` values.
//!         let ocaml_first_n = unsafe { OCaml::of_i64_unchecked(first_n as i64) };
//!
//!         // Any OCaml function (declared above in a `ocaml!` block) can be called as a regular
//!         // Rust function, by passing a `&mut OCamlRuntime` as the first argument, followed by
//!         // the rest of the arguments declared for that function.
//!         // Arguments to these functions must be references to roots: `OCamlRef<T>`
//!         let result1 = ocaml_funcs::increment_bytes(
//!             cr,             // &mut OCamlRuntime
//!             bytes1_root,    // OCamlRef<String>
//!             // Immediate OCaml values, such as ints and books have an as_value_ref() method
//!             // that can be used to simulate rooting.
//!             &ocaml_first_n, // OCamlRef<OCamlInt>
//!         );
//!
//!         // Perform the conversion of the OCaml result value into a
//!         // Rust value while the reference is still valid because the
//!         // call that follows will invalidate it.
//!         // Alternatively, the result of `rootvar.keep(result1)` could be used
//!         // to be able to reference the value later through an `OCamlRef` value.
//!         let new_bytes1: String = result1.to_rust();
//!         let result2 = ocaml_funcs::increment_bytes(
//!             cr,
//!             bytes2_root,
//!             &ocaml_first_n,
//!         );
//!
//!         // The `FromOCaml` trait provides the `from_ocaml` method to convert from
//!         // OCaml values into OCaml values. Unlike the `to_ocaml` method, it doesn't
//!         // require a GC handle argument, because no allocation is performed by the
//!         // OCaml runtime when converting into Rust values.
//!         // A more convenient alternative, is to use the `to_rust` method as
//!         // above when `result1` was converted.
//!         (new_bytes1, String::from_ocaml(result2))
//!     })
//! }
//!
//! fn twice(cr: &mut OCamlRuntime, num: usize) -> usize {
//!     ocaml_frame!(cr, (num_root), {
//!         let ocaml_num = unsafe { OCaml::of_i64_unchecked(num as i64) };
//!         let num_root = num_root.keep(ocaml_num);
//!         let result = ocaml_funcs::twice(cr, num_root);
//!         i64::from_ocaml(result) as usize
//!     })
//! }
//!
//! fn entry_point() {
//!     // IMPORTANT: the OCaml runtime has to be initialized first.
//!     let mut cr = OCamlRuntime::init();
//!     // `cr` is the OCaml runtime handle, must be passed to any function
//!     // that interacts with the OCaml runtime.
//!     let first_n = twice(&mut cr, 5);
//!     let bytes1 = "000000000000000".to_owned();
//!     let bytes2 = "aaaaaaaaaaaaaaa".to_owned();
//!     println!("Bytes1 before: {}", bytes1);
//!     println!("Bytes2 before: {}", bytes2);
//!     let (result1, result2) = increment_bytes(&mut cr, bytes1, bytes2, first_n);
//!     println!("Bytes1 after: {}", result1);
//!     println!("Bytes2 after: {}", result2);
//!     // `OCamlRuntime`'s `Drop` implementation will pefrorm the necessary cleanup
//!     // to shutdown the OCaml runtime.
//! }
//! ```
//!
//! ### Calling into Rust from OCaml
//!
//! To be able to call a Rust function from OCaml, it has to be defined in a way that exposes it to OCaml. This can be done with the [`ocaml_export!`] macro.
//!
//! #### Example
//!
//! ```rust,no_run
//! use ocaml_interop::{
//!     to_ocaml, ocaml_export, ocaml_frame, FromOCaml, OCamlInt, OCaml, OCamlBytes,
//!     OCamlRef, ToOCaml,
//! };
//!
//! // `ocaml_export` expands the function definitions by adding `pub` visibility and
//! // the required `#[no_mangle]` and `extern` declarations. It also takes care of
//! // acquiring the OCaml runtime handle and binding it to the name provided as
//! // the first parameter of the function.
//! ocaml_export! {
//!     // The first parameter is a name to which the GC frame handle will be bound to.
//!     // The remaining parameters must have type `OCamlRef<T>`, and the return
//!     // value `OCaml<T>`.
//!     fn rust_twice(cr, num: OCamlRef<OCamlInt>) -> OCaml<OCamlInt> {
//!         let num: i64 = num.to_rust(cr);
//!         unsafe { OCaml::of_i64_unchecked(num * 2) }
//!     }
//!
//!     fn rust_increment_bytes(
//!         cr,
//!         bytes: OCamlRef<OCamlBytes>,
//!         first_n: OCamlRef<OCamlInt>,
//!     ) -> OCaml<OCamlBytes> {
//!         let first_n: i64 = first_n.to_rust(cr);
//!         let first_n = first_n as usize;
//!         let mut vec: Vec<u8> = bytes.to_rust(cr);
//!
//!         for i in 0..first_n {
//!             vec[i] += 1;
//!         }
//!
//!         to_ocaml!(cr, vec)
//!     }
//! }
//! ```
//!
//! Then in OCaml, these functions can be referred to in the same way as C functions:
//!
//! ```ocaml
//! external rust_twice: int -> int = "rust_twice"
//! external rust_increment_bytes: bytes -> int -> bytes = "rust_increment_bytes"
//! ```
//!
//! ## References and links
//!
//! - OCaml Manual: [Chapter 20  Interfacing C with OCaml](https://caml.inria.fr/pub/docs/manual-ocaml/intfc.html).
//! - [Safely Mixing OCaml and Rust](https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxtbHdvcmtzaG9wcGV8Z3g6NDNmNDlmNTcxMDk1YTRmNg) paper by Stephen Dolan.
//! - [Safely Mixing OCaml and Rust](https://www.youtube.com/watch?v=UXfcENNM_ts) talk by Stephen Dolan.
//! - [CAMLroot: revisiting the OCaml FFI](https://arxiv.org/abs/1812.04905).
//! - [caml-oxide](https://github.com/stedolan/caml-oxide), the code from that paper.
//! - [ocaml-rs](https://github.com/zshipko/ocaml-rs), another OCaml<->Rust FFI library.

mod closure;
mod conv;
mod error;
mod macros;
mod memory;
mod mlvalues;
mod runtime;
mod value;

pub use crate::closure::{OCamlFn1, OCamlFn2, OCamlFn3, OCamlFn4, OCamlFn5};
pub use crate::conv::{FromOCaml, ToOCaml};
pub use crate::error::OCamlException;
pub use crate::memory::OCamlRef;
pub use crate::mlvalues::{
    OCamlBytes, OCamlFloat, OCamlInt, OCamlInt32, OCamlInt64, OCamlList, RawOCaml,
};
pub use crate::runtime::OCamlRuntime;
pub use crate::value::OCaml;

#[doc(hidden)]
pub mod internal {
    pub use crate::closure::OCamlClosure;
    pub use crate::memory::{caml_alloc, store_field, OCamlRawRoot};
    pub use crate::mlvalues::tag;
    pub use crate::mlvalues::UNIT;
    pub use ocaml_sys::caml_hash_variant;

    // To bypass ocaml_sys::int_val unsafe declaration
    pub fn int_val(val: super::RawOCaml) -> isize {
        unsafe { ocaml_sys::int_val(val) }
    }
}

#[doc(hidden)]
#[cfg(doctest)]
pub mod compile_fail_tests;

#[cfg(test)]
mod compile_ok_tests;