pub struct SolarPressure {
    pub phi: f64,
    pub e_loc: EclipseLocator,
}
Expand description

Computation of solar radiation pressure is based on STK: http://help.agi.com/stk/index.htm#gator/eq-solar.htm .

Fields§

§phi: f64

solar flux at 1 AU, in W/m^2

§e_loc: EclipseLocator

Implementations§

source§

impl SolarPressure

source

pub fn default_raw(shadow_bodies: Vec<Frame>, cosm: Arc<Cosm>) -> Self

Will set the solar flux at 1 AU to: Phi = 1367.0

source

pub fn default(shadow_body: Frame, cosm: Arc<Cosm>) -> Arc<Self>

Accounts for the shadowing of only one body and will set the solar flux at 1 AU to: Phi = 1367.0

source

pub fn with_flux( flux_w_m2: f64, shadow_bodies: Vec<Frame>, cosm: Arc<Cosm> ) -> Arc<Self>

Must provide the flux in W/m^2

Trait Implementations§

source§

impl Clone for SolarPressure

source§

fn clone(&self) -> SolarPressure

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Display for SolarPressure

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<X: SpacecraftExt> ForceModel<X> for SolarPressure

source§

fn eom(&self, ctx: &BaseSpacecraft<X>) -> Result<Vector3<f64>, NyxError>

Defines the equations of motion for this force model from the provided osculating state.
source§

fn dual_eom( &self, ctx: &BaseSpacecraft<X> ) -> Result<(Vector3<f64>, Matrix3<f64>), NyxError>

Force models must implement their partials, although those will only be called if the propagation requires the computation of the STM. The osc_ctx is the osculating context, i.e. it changes for each sub-step of the integrator.

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

const: unstable · source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

const: unstable · source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

const: unstable · source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

const: unstable · source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

§

impl<T> Pointable for T

§

const ALIGN: usize = mem::align_of::<T>()

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
§

impl<T> Printing<T> for Twhere T: Display,

§

fn to_str(self) -> String

Method to serialize. Decorates Vecs with square brackets and tuples with round ones. Implementation code is in printing.rs.
§

fn to_plainstr(self) -> String

Method to serialize in minimal form (space separated, no brackets) Implementation code is in printing.rs.
§

fn rd(self) -> String

Printable in red
§

fn gr(self) -> String

Printable in green
§

fn bl(self) -> String

Printable in blue
§

fn yl(self) -> String

Printable in yellow
§

fn mg(self) -> String

Printable in magenta
§

fn cy(self) -> String

Printable in cyan
§

fn wvec(self, f: &mut File) -> Result<(), Error>

Method to write vector(s) to file f (space separated, without brackets). Passes up io errors
§

fn pvec(self)

Method to print vector(s) to stdout (space separated,without brackets).
source§

impl<T> Same<T> for T

§

type Output = T

Should always be Self
§

impl<SS, SP> SupersetOf<SS> for SPwhere SS: SubsetOf<SP>,

§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T> ToString for Twhere T: Display + ?Sized,

source§

default fn to_string(&self) -> String

Converts the given value to a String. Read more
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
const: unstable · source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
const: unstable · source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for Twhere V: MultiLane<T>,

§

fn vzip(self) -> V