1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
// Copyright 2020-2021 Colin Finck <colin@reactos.org>
// SPDX-License-Identifier: GPL-2.0-or-later

use crate::error::{NtHiveError, Result};
use crate::helpers::byte_subrange;
use crate::hive::Hive;
use ::byteorder::LittleEndian;
use core::cmp;
use core::iter::FusedIterator;
use core::mem;
use core::ops::{Deref, Range};
use zerocopy::*;

/// Number of bytes that a single Big Data segment can hold.
/// Every Big Data segment contains that many data bytes except for the last one.
///
/// This is also the threshold to decide whether Key Value Data is considered Big Data or not.
/// Up to this size, data fits into a single cell and is handled via KeyValueData::Small.
/// Everything above needs a Big Data structure and is handled through KeyValueData::Big.
pub(crate) const BIG_DATA_SEGMENT_SIZE: usize = 16344;

/// On-Disk Structure of a Big Data header.
#[derive(AsBytes, FromBytes, Unaligned)]
#[repr(packed)]
struct BigDataHeader {
    signature: [u8; 2],
    segment_count: U16<LittleEndian>,
    segment_list_offset: U32<LittleEndian>,
}

/// On-Disk Structure of a Big Data list item.
#[derive(AsBytes, FromBytes, Unaligned)]
#[repr(packed)]
struct BigDataListItem {
    segment_offset: U32<LittleEndian>,
}

/// Byte range of a single Big Data list item returned by [`BigDataListItemRanges`].
struct BigDataListItemRange(Range<usize>);

impl BigDataListItemRange {
    fn segment_offset<B>(&self, hive: &Hive<B>) -> u32
    where
        B: ByteSlice,
    {
        let item =
            LayoutVerified::<&[u8], BigDataListItem>::new(&hive.data[self.0.clone()]).unwrap();
        item.segment_offset.get()
    }
}

impl Deref for BigDataListItemRange {
    type Target = Range<usize>;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

/// Iterator over
///   a contiguous range of data bytes containing Big Data list items,
///   returning a [`BigDataListItemRange`] for each item.
///
/// On-Disk Signature: `db`
#[derive(Clone)]
struct BigDataListItemRanges {
    items_range: Range<usize>,
}

impl BigDataListItemRanges {
    fn new<B>(
        hive: &Hive<B>,
        data_size: u32,
        data_size_field_offset: usize,
        header_cell_range: Range<usize>,
    ) -> Result<Self>
    where
        B: ByteSlice,
    {
        let data_size = data_size as usize;

        // The passed `header_cell_range` contains just the `BigDataHeader`.
        // Verify this header.
        let header_range = byte_subrange(&header_cell_range, mem::size_of::<BigDataHeader>())
            .ok_or_else(|| NtHiveError::InvalidHeaderSize {
                offset: hive.offset_of_data_offset(header_cell_range.start),
                expected: mem::size_of::<BigDataHeader>(),
                actual: header_cell_range.len(),
            })?;

        let header = LayoutVerified::new(&hive.data[header_range]).unwrap();
        Self::validate_signature(&hive, &header)?;

        // Check the `segment_count` of the `BigDataHeader`.
        // Verify that we have enough segments to contain the entire data.
        let segment_count = header.segment_count.get();
        let max_data_size = segment_count as usize * BIG_DATA_SEGMENT_SIZE;
        if data_size > max_data_size {
            return Err(NtHiveError::InvalidSizeField {
                offset: data_size_field_offset,
                expected: max_data_size,
                actual: data_size,
            });
        }

        // Get the Big Data segment list referenced by the `segment_list_offset`.
        let segment_list_offset = header.segment_list_offset.get();
        let segment_list_cell_range = hive.cell_range_from_data_offset(segment_list_offset)?;

        // Finally calculate the range of Big Data list items we want to iterate over.
        let byte_count = segment_count as usize * mem::size_of::<BigDataListItem>();

        let items_range = byte_subrange(&segment_list_cell_range, byte_count).ok_or_else(|| {
            NtHiveError::InvalidSizeField {
                offset: hive.offset_of_field(&header.segment_count),
                expected: byte_count,
                actual: segment_list_cell_range.len(),
            }
        })?;

        Ok(Self { items_range })
    }

    fn validate_signature<B>(
        hive: &Hive<B>,
        header: &LayoutVerified<&[u8], BigDataHeader>,
    ) -> Result<()>
    where
        B: ByteSlice,
    {
        let signature = &header.signature;
        let expected_signature = b"db";

        if signature == expected_signature {
            Ok(())
        } else {
            Err(NtHiveError::InvalidTwoByteSignature {
                offset: hive.offset_of_field(signature),
                expected: expected_signature,
                actual: *signature,
            })
        }
    }
}

impl Iterator for BigDataListItemRanges {
    type Item = BigDataListItemRange;

    fn next(&mut self) -> Option<Self::Item> {
        let item_range = byte_subrange(&self.items_range, mem::size_of::<BigDataListItem>())?;
        self.items_range.start += mem::size_of::<BigDataListItem>();

        Some(BigDataListItemRange(item_range))
    }

    fn count(self) -> usize {
        let (size, _) = self.size_hint();
        size
    }

    fn last(mut self) -> Option<Self::Item> {
        let (size, _) = self.size_hint();
        if size == 0 {
            return None;
        }

        self.nth(size - 1)
    }

    fn nth(&mut self, n: usize) -> Option<Self::Item> {
        // `n` is arbitrary and usize, so we may hit boundaries here. Check that!
        let bytes_to_skip = n.checked_mul(mem::size_of::<BigDataListItem>())?;
        self.items_range.start = self.items_range.start.checked_add(bytes_to_skip)?;
        self.next()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let size = self.items_range.len() / mem::size_of::<BigDataListItem>();
        (size, Some(size))
    }
}

impl ExactSizeIterator for BigDataListItemRanges {}
impl FusedIterator for BigDataListItemRanges {}

/// Iterator over
///   a contiguous range of data bytes containing Big Data list items,
///   returning a constant byte slice for each item,
///   used by [`KeyValueData`].
///
/// On-Disk Signature: `db`
///
/// [`KeyValueData`]: crate::key_value::KeyValueData
#[derive(Clone)]
pub struct BigDataSlices<'a, B: ByteSlice> {
    hive: &'a Hive<B>,
    big_data_list_item_ranges: BigDataListItemRanges,
    bytes_left: usize,
}

impl<'a, B> BigDataSlices<'a, B>
where
    B: ByteSlice,
{
    pub(crate) fn new(
        hive: &'a Hive<B>,
        data_size: u32,
        data_size_field_offset: usize,
        header_cell_range: Range<usize>,
    ) -> Result<Self> {
        let big_data_list_item_ranges =
            BigDataListItemRanges::new(hive, data_size, data_size_field_offset, header_cell_range)?;

        Ok(Self {
            hive,
            big_data_list_item_ranges,
            bytes_left: data_size as usize,
        })
    }
}

impl<'a, B> Iterator for BigDataSlices<'a, B>
where
    B: ByteSlice,
{
    type Item = Result<&'a [u8]>;

    fn next(&mut self) -> Option<Self::Item> {
        // Every segment contains BIG_DATA_SEGMENT_SIZE bytes of data except for the last one.
        let bytes_to_return = cmp::min(self.bytes_left, BIG_DATA_SEGMENT_SIZE);
        if bytes_to_return == 0 {
            return None;
        }

        // Get the next segment offset and adjust `bytes_left` accordingly.
        let big_data_list_item_range = self.big_data_list_item_ranges.next()?;
        let segment_offset = big_data_list_item_range.segment_offset(&self.hive);
        self.bytes_left -= bytes_to_return;

        // Get the cell belonging to that offset and check if it contains as many bytes
        // as we expect.
        let cell_range = iter_try!(self.hive.cell_range_from_data_offset(segment_offset));
        let data_range = iter_try!(byte_subrange(&cell_range, bytes_to_return).ok_or_else(|| {
            NtHiveError::InvalidDataSize {
                offset: self.hive.offset_of_data_offset(cell_range.start),
                expected: bytes_to_return,
                actual: cell_range.len(),
            }
        }));

        // Return a byte slice containing this segment's data.
        Some(Ok(&self.hive.data[data_range]))
    }

    fn count(self) -> usize {
        self.big_data_list_item_ranges.count()
    }

    fn last(mut self) -> Option<Self::Item> {
        let (size, _) = self.size_hint();
        if size == 0 {
            return None;
        }

        self.nth(size - 1)
    }

    fn nth(&mut self, n: usize) -> Option<Self::Item> {
        // `n` is arbitrary and usize, so we may hit boundaries here. Check that!
        let bytes_to_skip = n.checked_mul(BIG_DATA_SEGMENT_SIZE)?;
        self.bytes_left = self.bytes_left.saturating_sub(bytes_to_skip);
        if self.bytes_left == 0 {
            return None;
        }

        // This calculation is safe considering that we have checked the
        // multiplication and subtraction above.
        self.big_data_list_item_ranges.items_range.start += n * mem::size_of::<BigDataListItem>();

        self.next()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.big_data_list_item_ranges.size_hint()
    }
}

impl<'a, B> ExactSizeIterator for BigDataSlices<'a, B> where B: ByteSlice {}
impl<'a, B> FusedIterator for BigDataSlices<'a, B> where B: ByteSlice {}

#[cfg(test)]
mod tests {
    use crate::*;

    #[test]
    fn test_big_data() {
        let testhive = crate::helpers::tests::testhive_vec();
        let hive = Hive::new(testhive.as_ref()).unwrap();
        let root_key_node = hive.root_key_node().unwrap();
        let key_node = root_key_node.subkey("big-data-test").unwrap().unwrap();

        // Key Value "A" should be filled with 16343 'A' bytes and still fit into a cell.
        let key_value = key_node.value("A").unwrap().unwrap();
        assert_eq!(key_value.data_type().unwrap(), KeyValueDataType::RegBinary);
        assert_eq!(key_value.data_size(), 16343);

        let expected_data = vec![b'A'; 16343];
        let key_value_data = key_value.data().unwrap();
        assert!(matches!(key_value_data, KeyValueData::Small(_)));
        assert_eq!(key_value_data.into_vec().unwrap(), expected_data);

        // Key Value "B" should be filled with 16344 'B' bytes and still fit into a cell.
        let key_value = key_node.value("B").unwrap().unwrap();
        assert_eq!(key_value.data_type().unwrap(), KeyValueDataType::RegBinary);
        assert_eq!(key_value.data_size(), 16344);

        let expected_data = vec![b'B'; 16344];
        let key_value_data = key_value.data().unwrap();
        assert!(matches!(key_value_data, KeyValueData::Small(_)));
        assert_eq!(key_value_data.into_vec().unwrap(), expected_data);

        // Key Value "C" should be filled with 16345 'C' bytes and require a Big Data structure.
        let key_value = key_node.value("C").unwrap().unwrap();
        assert_eq!(key_value.data_type().unwrap(), KeyValueDataType::RegBinary);
        assert_eq!(key_value.data_size(), 16345);

        let expected_data = vec![b'C'; 16345];
        let key_value_data = key_value.data().unwrap();
        assert!(matches!(key_value_data, KeyValueData::Big(_)));
        assert_eq!(key_value_data.into_vec().unwrap(), expected_data);
    }
}