nsi 0.6.0

Nodal Scene Interface for (offline) 3D renderers – ɴsɪ.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
// Needed for the example dode to build.
extern crate self as nsi;
use crate::{argument::*, *};
// std::slice is imported so the (doc) examples compile w/o hiccups.
#[allow(unused_imports)]
use std::{
    ffi::{CStr, CString},
    marker::PhantomData,
    ops::Drop,
    os::raw::{c_int, c_void},
    slice,
    vec::Vec,
};

/// # An ɴsɪ Context.
///
/// A context is used to describe a scene to the renderer and
/// request images to be rendered from it.
/// ## Thread Safety
/// A context may be used in multiple threads at once.
/// ## Lifetime
/// A context can be used without worrying about its lifetime
/// until you want to store it somewhere, e.g. in a struct.
///
/// The reason a context has an explicit lifetime is so that it can
/// take [`Reference`]s. These references must be valid until the
/// context is dropped and this guarantee requires explicit lifetimes.
/// When you use a context directly this is not an issue
/// but when you want to reference it somewhere the same rules
/// as with all references apply.
///
/// ## Further Reading
/// See the [ɴsɪ docmentation on context
/// handling](https://nsi.readthedocs.io/en/latest/c-api.html#context-handling).
#[derive(Debug, Hash, PartialEq)]
pub struct Context<'a> {
    context: NSIContext_t,
    // _marker needs to be invariant in 'a.
    // See "Making a struct outlive a parameter given to a method of
    // that struct": https://stackoverflow.com/questions/62374326/
    _marker: PhantomData<*mut &'a ()>,
}

/*
impl<'a> From<NSIContext_t> for Context<'a> {
    #[inline]
    fn from(context: NSIContext_t) -> Self {
        Self {
            context,
            _marker: PhantomData,
        }
    }
}*/

impl<'a> From<Context<'a>> for NSIContext_t {
    #[inline]
    fn from(context: Context<'a>) -> Self {
        context.context
    }
}

impl<'a> Context<'a> {
    /// Creates an ɴsɪ context.
    ///
    /// Contexts may be used in multiple threads at once.
    ///
    /// # Example
    /// ```
    /// // Create rendering context that dumps to stdout.
    /// let ctx = nsi::Context::new(&[nsi::string!("streamfilename", "stdout")])
    ///     .expect("Could not create ɴsɪ context.");
    /// ```
    /// # Error
    /// If this method fails for some reason, it returns [`None`].
    #[inline]
    pub fn new(args: &ArgSlice<'_, 'a>) -> Option<Self> {
        let (args_len, args_ptr, _args_out) = get_c_param_vec(args);

        let context = NSI_API.NSIBegin(args_len, args_ptr);

        if 0 == context {
            None
        } else {
            Some(Self {
                context,
                _marker: PhantomData,
            })
        }
    }

    /// Creates a new node.
    ///
    /// # Arguments
    ///
    /// * `handle` - A node handle. This string will uniquely identify the node
    ///   in the scene.
    ///
    ///   If the supplied handle matches an existing node, the function
    ///   does nothing if all other parameters match the call which
    ///   created that node. Otherwise, it emits an error. Note that
    ///   handles need only be unique within a given [`Context`].
    ///   It is acceptable to reuse the same handle inside different
    ///   [`Context`]s.
    ///
    /// * `node_type` – The type of node to create. You can use [`NodeType`] to
    ///   create nodes that are in the official NSI specificaion. As this
    ///   parameter is just a string you can instance other node types that a
    ///   particualr implementation may provide and which are not part of the
    ///   official specification.
    ///
    /// * `args` – A [`slice`] of optional [`Arg`] arguments. *There are no
    ///   optional arguments defined as of now*.
    ///
    /// ```
    /// // Create a context to send the scene to.
    /// let ctx = nsi::Context::new(&[]).unwrap();
    ///
    /// // Create an infinte plane.
    /// ctx.create("ground", nsi::NodeType::Plane, &[]);
    /// ```
    #[inline]
    pub fn create(
        &self,
        handle: impl Into<Vec<u8>>,
        node_type: impl Into<Vec<u8>>,
        args: &ArgSlice<'_, 'a>,
    ) {
        let handle = CString::new(handle).unwrap();
        let node_type = CString::new(node_type).unwrap();
        let (args_len, args_ptr, _args_out) = get_c_param_vec(args);

        NSI_API.NSICreate(
            self.context,
            handle.as_ptr(),
            node_type.as_ptr(),
            args_len,
            args_ptr,
        );
    }

    /// This function deletes a node from the scene. All connections to
    /// and from the node are also deleted.
    ///
    /// Note that it is not possible to delete the `.root` or the
    /// `.global` nodes.
    ///
    /// # Arguments
    /// * `handle` – A handle to a node previously created with
    ///   [`create()`](Context::create()).
    ///
    /// * `args` – A [`slice`] of optional [`Arg`] arguments.
    ///
    /// # Optional Arguments
    /// * `"recursive"` ([`Integer`]) – Specifies whether deletion is recursive.
    ///   By default, only the specified node is deleted. If a value of `1` is
    ///   given, then nodes which connect to the specified node are recursively
    ///   removed. Unless they meet one of the following conditions:
    ///   * They also have connections which do not eventually lead to the
    ///     specified node.
    ///   * Their connection to the node to be deleted was created with a
    ///     `strength` greater than `0`.
    ///
    ///   This allows, for example, deletion of an entire shader network in a
    /// single call.
    #[inline]
    pub fn delete(&self, handle: impl Into<Vec<u8>>, args: &ArgSlice<'_, 'a>) {
        let handle = CString::new(handle).unwrap();
        let (args_len, args_ptr, _args_out) = get_c_param_vec(args);

        NSI_API.NSIDelete(self.context, handle.as_ptr(), args_len, args_ptr);
    }

    /// This functions sets attributes on a previously node.
    /// All optional arguments of the function become attributes of
    /// the node.
    ///
    /// On a [`NodeType::Shader`], this function is used to set the implicitly
    /// defined shader arguments.
    ///
    /// Setting an attribute using this function replaces any value
    /// previously set by [`set_attribute()`](Context::set_attribute()) or
    /// [`set_attribute_at_time()`](Context::set_attribute_at_time()).
    ///
    /// To reset an attribute to its default value, use
    /// [`delete_attribute()`](Context::delete_attribute()).
    ///
    /// # Arguments
    /// * `handle` – A handle to a node previously created with
    ///   [`create()`](Context::create()).
    ///
    /// * `args` – A [`slice`] of optional [`Arg`] arguments.
    #[inline]
    pub fn set_attribute(&self, handle: impl Into<Vec<u8>>, args: &ArgSlice<'_, 'a>) {
        let handle = CString::new(handle).unwrap();
        let (args_len, args_ptr, _args_out) = get_c_param_vec(args);

        NSI_API.NSISetAttribute(self.context, handle.as_ptr(), args_len, args_ptr);
    }

    /// This function sets time-varying attributes (i.e. motion blurred).
    ///
    /// The `time` argument specifies at which time the attribute is being
    /// defined.
    ///
    /// It is not required to set time-varying attributes in any
    /// particular order. In most uses, attributes that are motion blurred must
    /// have the same specification throughout the time range.
    ///
    /// A notable  exception is the `P` attribute on [`NodeType::Particles`]
    /// which can be of different size for each time step because of appearing
    /// or disappearing particles. Setting an attribute using this function
    /// replaces any value previously set by
    /// [`set_attribute()`](Context::set_attribute()).
    ///
    /// # Arguments
    /// * `handle` – A handle to a node previously created with
    ///   [`create()`](Context::create()).
    ///
    /// * `time` – The time at which to set the value.
    ///
    /// * `args` – A [`slice`] of optional [`Arg`] arguments.
    #[inline]
    pub fn set_attribute_at_time(
        &self,
        handle: impl Into<Vec<u8>>,
        time: f64,
        args: &ArgSlice<'_, 'a>,
    ) {
        let handle = CString::new(handle).unwrap();
        let (args_len, args_ptr, _args_out) = get_c_param_vec(args);

        NSI_API.NSISetAttributeAtTime(self.context, handle.as_ptr(), time, args_len, args_ptr);
    }

    /// This function deletes any attribute with a name which matches
    /// the `name` argument on the specified object. There is no way to
    /// delete an attribute only for a specific time value.
    ///
    /// Deleting an attribute resets it to its default value.
    ///
    /// For example, after deleting the `transformationmatrix` attribute
    /// on a [`NodeType::Transform`], the transform will be an identity.
    /// Deleting a previously set attribute on a [`NodeType::Shader`]
    /// will default to whatever is declared inside the shader.
    ///
    /// # Arguments
    /// * `handle` – A handle to a node previously created with
    ///   [`create()`](Context::create()).
    ///
    /// * `name` – The name of the attribute to be deleted/reset.
    #[inline]
    pub fn delete_attribute(&self, handle: impl Into<Vec<u8>>, name: impl Into<Vec<u8>>) {
        let handle = CString::new(handle).unwrap();
        let name = CString::new(name).unwrap();

        NSI_API.NSIDeleteAttribute(self.context, handle.as_ptr(), name.as_ptr());
    }

    /// Create a connection between two elements.
    ///
    /// It is not an error to create a connection which already exists
    /// or to remove a connection which does not exist but the nodes
    /// on which the connection is performed must exist.
    ///
    /// # Arguments
    /// * `from` – The handle of the node from which the connection is made.
    ///
    /// * `from_attr` – The name of the attribute from which the connection is
    ///   made. If this is an empty string then the connection is made from the
    ///   node instead of from a specific attribute of the node.
    ///
    /// * `to` – The handle of the node to which the connection is made.
    ///
    /// * `to_attr` – The name of the attribute to which the connection is made.
    ///   If this is an empty string then the connection is made to the node
    ///   instead of to a specific attribute of the node.
    ///
    /// # Optional Arguments
    ///
    /// * `"value"` – This can be used to change the value of a node's attribute
    ///   in some contexts. Refer to guidelines on inter-object visibility for
    ///   more information about the utility of this parameter.
    ///
    /// * `"priority"` ([`Integer`]) – When connecting attribute nodes,
    ///   indicates in which order the nodes should be considered when
    ///   evaluating the value of an attribute.
    ///
    /// * `"strength"` ([`Integer`]) – A connection with a `strength` greater
    ///   than `0` will *block* the progression of a recursive
    ///   [`delete()`](Context::delete()).
    #[inline]
    pub fn connect(
        &self,
        from: impl Into<Vec<u8>>,
        from_attr: impl Into<Vec<u8>>,
        to: impl Into<Vec<u8>>,
        to_attr: impl Into<Vec<u8>>,
        args: &ArgSlice<'_, 'a>,
    ) {
        let from = CString::new(from).unwrap();
        let from_attr = CString::new(from_attr).unwrap();
        let to = CString::new(to).unwrap();
        let to_attr = CString::new(to_attr).unwrap();
        let (args_len, args_ptr, _args_out) = get_c_param_vec(args);

        NSI_API.NSIConnect(
            self.context,
            from.as_ptr(),
            from_attr.as_ptr(),
            to.as_ptr(),
            to_attr.as_ptr(),
            args_len,
            args_ptr,
        );
    }

    /// This function removes a connection between two elements.
    ///
    /// The handle for either node may be the special value `".all"`.
    /// This will remove all connections which match the other three
    /// arguments.
    ///
    /// # Example
    /// ```
    /// // Create a rendering context.
    /// let ctx = nsi::Context::new(&[]).unwrap();
    /// // [...]
    /// // Disconnect everything from the scene's root.
    /// ctx.disconnect(".all", "", ".root", "");
    /// ```
    #[inline]
    pub fn disconnect(
        &self,
        from: impl Into<Vec<u8>>,
        from_attr: impl Into<Vec<u8>>,
        to: impl Into<Vec<u8>>,
        to_attr: impl Into<Vec<u8>>,
    ) {
        let from = CString::new(from).unwrap();
        let from_attr = CString::new(from_attr).unwrap();
        let to = CString::new(to).unwrap();
        let to_attr = CString::new(to_attr).unwrap();

        NSI_API.NSIDisconnect(
            self.context,
            from.as_ptr(),
            from_attr.as_ptr(),
            to.as_ptr(),
            to_attr.as_ptr(),
        );
    }

    /// This function includes a block of interface calls from an external source into the current
    /// scene. It blends together the concepts of a file include, commonly known as an *archive*,
    /// with that of procedural include which is traditionally a compiled executable. Both are the
    /// same idea expressed in a different language.
    ///
    /// Note that for delayed procedural evaluation you should use a
    /// [`Procedural`](NodeType::Procedural) node.
    ///
    /// The ɴsɪ adds a third option which sits in-between — [Lua
    /// scripts](https://nsi.readthedocs.io/en/latest/lua-api.html). They are more powerful than a
    /// simple included file yet they are also easier to generate as they do not require
    /// compilation.
    ///
    /// For example, it is realistic to export a whole new script for every frame of an animation.
    /// It could also be done for every character in a frame. This gives great flexibility in how
    /// components of a scene are put together.
    ///
    /// The ability to load ɴsɪ commands from memory is also provided.
    ///
    /// # Optional Arguments
    ///
    /// * `"type"` ([`String`]) – The type of file which will generate the interface calls. This
    ///   can be one of:
    ///   * `"apistream"` – Read in an ɴsɪ stream. This requires either `"filename"` or
    ///     `"buffer"`/`"size"` arguments to be specified too.
    ///
    ///   * `"lua"` – Execute a Lua script, either from file or inline. See also
    ///     [how to evaluate a Lua script](https://nsi.readthedocs.io/en/latest/lua-api.html#luaapi-evaluation).
    ///
    ///   * `"dynamiclibrary"` – Execute native compiled code in a loadable library. See
    ///     [dynamic library procedurals](https://nsi.readthedocs.io/en/latest/procedurals.html#section-procedurals)
    ///     for an implementation example in C.
    ///
    /// * `"filename"` ([`String`]) – The name of the file which contains the interface calls to
    ///   include.
    ///
    /// * `"script"` ([`String`]) – A valid Lua script to execute when `"type"` is set to `"lua"`.
    ///
    /// * `"buffer"` ([`Pointer`])
    /// * `"size"` ([`Integer`]) – These two parameters define a memory block that contain ɴsɪ
    ///   commands to execute.
    ///
    /// * `"backgroundload"` ([`Integer`]) – If this is nonzero, the object may
    ///   be loaded in a separate thread, at some later time. This requires that
    ///   further interface calls not directly reference objects defined in the
    ///   included file. The only guarantee is that the file will be loaded
    ///   before rendering begins.
    #[inline]
    pub fn evaluate(&self, args: &ArgSlice<'_, 'a>) {
        let (args_len, args_ptr, _args_out) = get_c_param_vec(args);

        NSI_API.NSIEvaluate(self.context, args_len, args_ptr);
    }

    /// This function is the only control function of the API.
    ///
    /// It is responsible of starting, suspending and stopping the render. It also allows for
    /// synchronizing the render with interactive calls that might have been issued.
    ///
    /// # Optional Arguments
    ///
    /// * `"action"` ([`String`]) – Specifies the operation to be performed, which should be one
    ///   of the following:
    ///   * `"start"` – This starts rendering the scene in the provided context. The render starts
    ///     in parallel and the control flow is not blocked.
    ///
    ///   * `"wait"` – Wait for a render to finish.
    ///
    ///   * `"synchronize"` – For an interactive render, apply all the buffered calls to scene’s
    ///     state.
    ///
    ///   * `"suspend"` – Suspends render in the provided context.
    ///
    ///   * `"resume"` – Resumes a previously suspended render.
    ///
    ///   * `"stop"` – Stops rendering in the provided context without destroying the scene.
    /// * `"progressive"` ([`Integer`]) – If set to `1`, render the image in a progressive fashion.
    ///
    /// * `"interactive"` ([`Integer`]) – If set to `1`, the renderer will accept commands to edit
    ///   scene’s state while rendering. The difference with a normal render is that the render
    ///   task will not exit even if rendering is finished. Interactive renders are by definition
    ///   progressive.
    ///
    /// * `"frame"` – Specifies the frame number of this render.
    #[inline]
    pub fn render_control(&self, args: &ArgSlice<'_, 'a>) {
        let (_, _, mut args_out) = get_c_param_vec(args);

        let fn_pointer: nsi_sys::NSIRenderStopped_t =
            Some(render_status as extern "C" fn(*mut c_void, i32, i32));

        if let Some(arg) = args.iter().find_map(|arg| {
            if unsafe { CStr::from_bytes_with_nul_unchecked(b"callback\0") } == arg.name.as_c_str()
            {
                Some(arg)
            } else {
                None
            }
        }) {
            args_out.push(nsi_sys::NSIParam_t {
                name: b"stoppedcallback\0" as *const _ as _,
                data: &fn_pointer as *const _ as _,
                type_: NSIType_t_NSITypePointer as _,
                arraylength: 0,
                count: 1,
                flags: 0,
            });
            args_out.push(nsi_sys::NSIParam_t {
                name: b"stoppedcallbackdata\0" as *const _ as _,
                data: &arg.data.as_c_ptr() as *const _ as _,
                type_: NSIType_t_NSITypePointer as _,
                arraylength: 1,
                count: 1,
                flags: 0,
            });
        }

        NSI_API.NSIRenderControl(self.context, args_out.len() as _, args_out.as_ptr());
    }
}

impl<'a> Drop for Context<'a> {
    #[inline]
    fn drop(&mut self) {
        NSI_API.NSIEnd(self.context);
    }
}

/// The type for a node in the ɴsɪ scene graph.
///
/// This will just convert into a `Vec<u8>` of the string representing
/// the node type when you use it.
pub enum NodeType {
    /// Wildcard node that references all existing nodes at once.
    All,
    /// The scene’s root (`".root"`).
    /// [Documentation](https://nsi.readthedocs.io/en/latest/nodes.html#node-root).
    Root, // = ".root",
    /// Global settings node (`".global"`).
    /// [Documentation](https://nsi.readthedocs.io/en/latest/nodes.html#the-global-node).
    Global,
    /// Expresses relationships of groups of nodes.
    /// [Documentation](https://nsi.readthedocs.io/en/latest/nodes.html#node-set).
    Set,
    /// [ᴏsʟ](http://opensource.imageworks.com/osl.html) shader or layer in a shader group.
    /// [Documentation](https://nsi.readthedocs.io/en/latest/nodes.html#node-shader).
    Shader,
    /// Container for generic attributes (e.g. visibility).
    /// [Documentation](https://nsi.readthedocs.io/en/latest/nodes.html#node-attributes).
    Attributes,
    /// Transformation to place objects in the scene.
    /// [Documentation](https://nsi.readthedocs.io/en/latest/nodes.html#node-transform).
    Transform,
    /// Specifies instances of other nodes.
    /// [Documentation](https://nsi.readthedocs.io/en/latest/nodes.html#node-instances).
    Instances,
    /// An infinite plane.
    /// [Documentation](https://nsi.readthedocs.io/en/latest/nodes.html#node-plane).
    Plane,
    /// Polygonal mesh or subdivision surface.
    /// [Documentation](https://nsi.readthedocs.io/en/latest/nodes.html#node-mesh).
    Mesh,
    /// Assign attributes to part of a mesh, curves or paticles.
    /// [Documentation](https://nsi.readthedocs.io/en/latest/nodes.html#node-faceset).
    FaceSet,
    /// Linear, b-spline and Catmull-Rom curves.
    /// [Documentation](https://nsi.readthedocs.io/en/latest/nodes.html#node-curves).
    Curves,
    /// Collection of particles.
    /// [Documentation](https://nsi.readthedocs.io/en/latest/nodes.html#node-particles).
    Particles,
    /// Geometry to be loaded or generated in delayed fashion.
    /// [Documentation](https://nsi.readthedocs.io/en/latest/nodes.html#node-procedural).
    Procedural,
    /// A volume loaded from an [OpenVDB](https://www.openvdb.org) file.
    /// [Documentation](https://nsi.readthedocs.io/en/latest/nodes.html#node-volume).
    ///
    /// Also see the `volume` example.
    Volume,
    /// Geometry type to define environment lighting.
    /// [Documentation](https://nsi.readthedocs.io/en/latest/nodes.html#node-environment).
    Environment,
    /// Set of nodes to create viewing cameras.
    /// [Documentation](https://nsi.readthedocs.io/en/latest/nodes.html#node-camera).
    Camera,
    OrthographicCamera,
    PerspectiveCamera,
    FisheyeCamera,
    CylindricalCamera,
    SphericalCamera,
    /// A target where to output rendered pixels.
    /// [Documentation](https://nsi.readthedocs.io/en/latest/nodes.html#node-outputdriver).
    OutputDriver,
    /// Describes one render layer to be connected to an `outputdriver` node.
    /// [Documentation](https://nsi.readthedocs.io/en/latest/nodes.html#node-outputlayer).
    OutputLayer,
    /// Describes how the view from a camera node will be rasterized into an `outputlayer` node.
    /// [Documentation](https://nsi.readthedocs.io/en/latest/nodes.html#node-screen).
    Screen,
}

impl From<NodeType> for Vec<u8> {
    #[inline]
    fn from(node_type: NodeType) -> Self {
        match node_type {
            NodeType::All => b".all".to_vec(),
            NodeType::Root => b".root".to_vec(),
            NodeType::Global => b".global".to_vec(),
            NodeType::Set => b"set".to_vec(),
            NodeType::Plane => b"plane".to_vec(),
            NodeType::Shader => b"shader".to_vec(),
            NodeType::Attributes => b"attributes".to_vec(),
            NodeType::Transform => b"transform".to_vec(),
            NodeType::Instances => b"instances".to_vec(),
            NodeType::Mesh => b"mesh".to_vec(),
            NodeType::FaceSet => b"faceset".to_vec(),
            NodeType::Curves => b"curves".to_vec(),
            NodeType::Particles => b"particles".to_vec(),
            NodeType::Procedural => b"procedural".to_vec(),
            NodeType::Volume => b"volume".to_vec(),
            NodeType::Environment => b"environment".to_vec(),
            NodeType::Camera => b"camera".to_vec(),
            NodeType::OrthographicCamera => b"orthographiccamera".to_vec(),
            NodeType::PerspectiveCamera => b"perspectivecamera".to_vec(),
            NodeType::FisheyeCamera => b"fisheyecamera".to_vec(),
            NodeType::CylindricalCamera => b"cylindricalcamera".to_vec(),
            NodeType::SphericalCamera => b"sphericalcamera".to_vec(),
            NodeType::OutputDriver => b"outputdriver".to_vec(),
            NodeType::OutputLayer => b"outputlayer".to_vec(),
            NodeType::Screen => b"screen".to_vec(),
        }
    }
}

/// The status of a *interactive* render session.
#[repr(i32)]
#[derive(Debug, Copy, Clone, PartialEq, Eq, num_enum::FromPrimitive)]
pub enum RenderStatus {
    #[num_enum(default)]
    Completed = nsi_sys::NSIStoppingStatus_NSIRenderCompleted as _,
    Aborted = nsi_sys::NSIStoppingStatus_NSIRenderAborted as _,
    Synchronized = nsi_sys::NSIStoppingStatus_NSIRenderSynchronized as _,
    Restarted = nsi_sys::NSIStoppingStatus_NSIRenderRestarted as _,
}

/// A closure which is called to inform about the status of an ongoing render.
///
/// It is passed to ɴsɪ via [`render_control()`](Context::render_control())’s the `"callback"` argument.
///
/// # Example
/// ```
/// # let ctx = nsi::Context::new(&[]).unwrap();
/// let status_callback = nsi::context::StatusCallback::new(
///     |_ctx: &nsi::context::Context, status: nsi::context::RenderStatus| {
///         println!("Status: {:?}", status);
///     },
/// );
///
/// ctx.render_control(&[
///     nsi::string!("action", "start"),
///     nsi::callback!("callback", status_callback),
/// ]);
/// ```
pub trait FnStatus<'a>: Fn(
    // The [`Context`] for which this closure was called.
    &Context,
    // Status of interactive render session.
    RenderStatus,
)
+ 'a {}

#[doc(hidden)]
impl<
        'a,
        T: Fn(&Context, RenderStatus) + 'a + for<'r, 's> Fn(&'r context::Context<'s>, RenderStatus),
    > FnStatus<'a> for T
{
}

// FIXME once trait aliases are in stable.
/*
trait FnStatus<'a> = FnMut(
    // Status of interactive render session.
    status: RenderStatus
    )
    + 'a
*/

/// Wrapper to pass a [`FnStatus`] closure to a [`Context`].
pub struct StatusCallback<'a>(Box<Box<dyn FnStatus<'a>>>);

impl<'a> StatusCallback<'a> {
    pub fn new<F>(fn_status: F) -> Self
    where
        F: FnStatus<'a>,
    {
        StatusCallback(Box::new(Box::new(fn_status)))
    }
}

impl CallbackPtr for StatusCallback<'_> {
    #[doc(hidden)]
    fn to_ptr(self) -> *const core::ffi::c_void {
        Box::into_raw(self.0) as *const _ as _
    }
}

// Trampoline function for the FnStatus callback.
#[no_mangle]
pub(crate) extern "C" fn render_status(
    payload: *mut c_void,
    context: nsi_sys::NSIContext_t,
    status: c_int,
) {
    if !payload.is_null() {
        let fn_status = unsafe { Box::from_raw(payload as *mut Box<dyn FnStatus>) };
        let ctx = Context {
            context,
            _marker: PhantomData,
        };

        fn_status(&ctx, status.into());

        // We must not call drop() on this context.
        // This is safe as Context doesn't allocate and this one is on the stack anyway.
        std::mem::forget(ctx);
    }
}