1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/******************************************************************************
 * Copyright 2019 Manuel Simon
 * This file is part of the norman library.
 *
 * Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
 * https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
 * <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
 * option. This file may not be copied, modified, or distributed
 * except according to those terms.
 *****************************************************************************/

//! Implementations of the norm traits on the collections `Vec` and `VecDeque`
//! from the standard library.

use std::collections::VecDeque;

use num_traits::{Num, Float};

use crate::{Norm, Distance};
use crate::desc::{Abs, Sup, PNorm, PNormReal};
use crate::utility::{supnorm_iterable, pnorm_iterable, pnorm_real_iterable};

impl<T: Norm<Abs, Output = R>, R: Num + PartialOrd> Norm<Sup> for Vec<T> {
    type Output = <T as Norm<Abs>>::Output;
    fn norm(&self, _desc: Sup) -> <Self as Norm<Sup>>::Output {
        supnorm_iterable(self.iter().map(|a| a.norm(Abs::new())))
    }
}

impl<T: Norm<Abs, Output = R>, R: Float + From<f32>> Norm<PNorm> for Vec<T> {
    type Output = <T as Norm<Abs>>::Output;
    fn norm(&self, desc: PNorm) -> <Self as Norm<PNorm>>::Output {
        pnorm_iterable(self.iter().map(|a| a.norm(Abs::new())), desc)
    }
}

impl<T: Norm<Abs, Output = R>, R: Float + From<f32>> Norm<PNormReal> for Vec<T> {
    type Output = <T as Norm<Abs>>::Output;
    fn norm(&self, desc: PNormReal) -> <Self as Norm<PNormReal>>::Output {
        pnorm_real_iterable(self.iter().map(|a| a.norm(Abs::new())), desc)
    }
}

impl<T: Distance<Abs, Output = R>, R: Num + PartialOrd> Distance<Sup> for Vec<T> {
    type Output = <T as Distance<Abs>>::Output;
    fn distance(&self, other: &Self, _desc: Sup) -> <Self as Distance<Sup>>::Output {
        assert_eq!(
            self.len(), other.len(),
            "Sizes of Vecs do not match. Left: {}; Right: {}.",
            self.len(), other.len()
        );
        supnorm_iterable(self.iter().zip(other).map(|(a, b)| a.distance(b, Abs::new())))
    }
}

impl<T: Distance<Abs, Output = R>, R: Float + From<f32>> Distance<PNorm> for Vec<T> {
    type Output = <T as Distance<Abs>>::Output;
    fn distance(&self, other: &Self, desc: PNorm) -> <Self as Distance<PNorm>>::Output {
        assert_eq!(
            self.len(), other.len(),
            "Sizes of Vecs do not match. Left: {}; Right: {}.",
            self.len(), other.len()
        );
        pnorm_iterable(self.iter().zip(other).map(|(a, b)| a.distance(b, Abs::new())), desc)
    }
}

impl<T: Distance<Abs, Output = R>, R: Float + From<f32>> Distance<PNormReal> for Vec<T> {
    type Output = <T as Distance<Abs>>::Output;
    fn distance(&self, other: &Self, desc: PNormReal) -> <Self as Distance<PNormReal>>::Output {
        assert_eq!(
            self.len(), other.len(),
            "Sizes of Vecs do not match. Left: {}; Right: {}.",
            self.len(), other.len()
        );
        pnorm_real_iterable(self.iter().zip(other).map(|(a, b)| a.distance(b, Abs::new())), desc)
    }
}


impl<T: Norm<Abs, Output = R>, R: Num + PartialOrd> Norm<Sup> for VecDeque<T> {
    type Output = <T as Norm<Abs>>::Output;
    fn norm(&self, _desc: Sup) -> <Self as Norm<Sup>>::Output {
        supnorm_iterable(self.iter().map(|a| a.norm(Abs::new())))
    }
}

impl<T: Norm<Abs, Output = R>, R: Float + From<f32>> Norm<PNorm> for VecDeque<T> {
    type Output = <T as Norm<Abs>>::Output;
    fn norm(&self, desc: PNorm) -> <Self as Norm<PNorm>>::Output {
        pnorm_iterable(self.iter().map(|a| a.norm(Abs::new())), desc)
    }
}

impl<T: Norm<Abs, Output = R>, R: Float + From<f32>> Norm<PNormReal> for VecDeque<T> {
    type Output = <T as Norm<Abs>>::Output;
    fn norm(&self, desc: PNormReal) -> <Self as Norm<PNormReal>>::Output {
        pnorm_real_iterable(self.iter().map(|a| a.norm(Abs::new())), desc)
    }
}

impl<T: Distance<Abs, Output = R>, R: Num + PartialOrd> Distance<Sup> for VecDeque<T> {
    type Output = <T as Distance<Abs>>::Output;
    fn distance(&self, other: &Self, _desc: Sup) -> <Self as Distance<Sup>>::Output {
        assert_eq!(
            self.len(), other.len(),
            "Sizes of VecDeques do not match. Left: {}; Right: {}.",
            self.len(), other.len()
        );
        supnorm_iterable(self.iter().zip(other).map(|(a, b)| a.distance(b, Abs::new())))
    }
}

impl<T: Distance<Abs, Output = R>, R: Float + From<f32>> Distance<PNorm> for VecDeque<T> {
    type Output = <T as Distance<Abs>>::Output;
    fn distance(&self, other: &Self, desc: PNorm) -> <Self as Distance<PNorm>>::Output {
        assert_eq!(
            self.len(), other.len(),
            "Sizes of VecDeques do not match. Left: {}; Right: {}.",
            self.len(), other.len()
        );
        pnorm_iterable(self.iter().zip(other).map(|(a, b)| a.distance(b, Abs::new())), desc)
    }
}

impl<T: Distance<Abs, Output = R>, R: Float + From<f32>> Distance<PNormReal> for VecDeque<T> {
    type Output = <T as Distance<Abs>>::Output;
    fn distance(&self, other: &Self, desc: PNormReal) -> <Self as Distance<PNormReal>>::Output {
        assert_eq!(
            self.len(), other.len(),
            "Sizes of VecDeques do not match. Left: {}; Right: {}.",
            self.len(), other.len()
        );
        pnorm_real_iterable(self.iter().zip(other).map(|(a, b)| a.distance(b, Abs::new())), desc)
    }
}

#[cfg(test)]
mod tests {
    use std::collections::VecDeque;

    use crate::{Norm, Distance};
    use crate::desc::{Sup, PNorm, PNormReal};

    #[test]
    fn supnorm_vec() {
        let a = vec![3.0f32, -4.0, 2.0];
        assert_eq!(a.norm(Sup::new()), 4.0);
        let b = vec![2.0f32, 2.0, 2.0];
        assert_eq!(a.distance(&b, Sup::new()), 6.0);
    }

    #[test]
    fn pnorm_vec() {
        let a = vec![3.0f32, -4.0, 2.0];
        assert_eq!(a.norm(PNorm::new(2)), 29.0f32.sqrt());
        let b = vec![2.0f32, 2.0, 2.0];
        assert_eq!(a.distance(&b, PNorm::new(2)), 37.0f32.sqrt());
    }

    #[test]
    fn pnorm_real_vec() {
        let a = vec![3.0f32, -4.0, 2.0];
        assert_eq!(a.norm(PNormReal::from_f32(2.0)), 29.0f32.sqrt());
        let b = vec![2.0f32, 2.0, 2.0];
        assert_eq!(a.distance(&b, PNormReal::from_f32(2.0)), 37.0f32.sqrt());
    }

    #[test]
    fn supnorm_vec_deque() {
        let a = vec![3.0f32, -4.0, 2.0];
        assert_eq!(a.norm(Sup::new()), 4.0);
        let b = vec![2.0f32, 2.0, 2.0];
        assert_eq!(a.distance(&b, Sup::new()), 6.0);
    }

    #[test]
    fn pnorm_vec_deque() {
        let a = VecDeque::from(vec![3.0f32, -4.0, 2.0]);
        assert_eq!(a.norm(PNorm::new(2)), 29.0f32.sqrt());
        let b = VecDeque::from(vec![2.0f32, 2.0, 2.0]);
        assert_eq!(a.distance(&b, PNorm::new(2)), 37.0f32.sqrt());
    }

    #[test]
    fn pnorm_real_vec_deque() {
        let a = VecDeque::from(vec![3.0f32, -4.0, 2.0]);
        assert_eq!(a.norm(PNormReal::from_f32(2.0)), 29.0f32.sqrt());
        let b = VecDeque::from(vec![2.0f32, 2.0, 2.0]);
        assert_eq!(a.distance(&b, PNormReal::from_f32(2.0)), 37.0f32.sqrt());
    }
}