1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
use std::alloc::{self, Layout};
use std::marker::PhantomData;
use std::mem;
use std::ops::{Deref, DerefMut};
use std::ptr::{self, NonNull};

struct RawVec<T> {
    ptr: NonNull<T>,
    cap: usize,
    _marker: PhantomData<T>,
}

impl<T> RawVec<T> {
    fn new() -> Self {
        let cap = if mem::size_of::<T>() == 0 {
            ::std::usize::MAX
        } else {
            0
        };
        // NonNull::dangling() doubles as "unallocated" and "zero-sized allocation"
        RawVec {
            ptr: NonNull::dangling(),
            cap,
            _marker: PhantomData,
        }
    }

    // unchanged from Vec
    fn grow(&mut self) {
        // since we set the capacity to usize::MAX when elem_size is
        // 0, getting to here necessarily means the Vec is overfull.
        assert!(mem::size_of::<T>() != 0, "capacity overflow");

        let (new_cap, new_layout) = if self.cap == 0 {
            (1, Layout::array::<T>(1).unwrap())
        } else {
            // this cant overflow because we ensure self.cap <= isize::MAX
            let new_cap = self.cap * 2;
            (new_cap, Layout::array::<T>(new_cap).unwrap())
        };

        assert!(
            new_layout.size() <= ::std::isize::MAX as usize,
            "Allocation too large"
        );

        let new_ptr = if self.cap == 0 {
            unsafe { alloc::alloc(new_layout) }
        } else {
            let old_layout = Layout::array::<T>(self.cap).unwrap();
            let old_ptr = self.ptr.as_ptr() as *mut u8;
            unsafe { alloc::realloc(old_ptr, old_layout, new_layout.size()) }
        };

        // if allocation fails, `new_ptr` will be null in which case we will abort
        self.ptr = match NonNull::new(new_ptr as *mut _) {
            Some(p) => p,
            None => alloc::handle_alloc_error(new_layout),
        };
        self.cap = new_cap;
    }
}

impl<T> Drop for RawVec<T> {
    fn drop(&mut self) {
        if self.cap != 0 {
            let elem_size = mem::size_of::<T>();

            // don't free zero-sized allocations, as they were never allocated.
            if self.cap != 0 && elem_size != 0 {
                let align = mem::align_of::<T>();
                let num_bytes = elem_size * self.cap;
                let layout = Layout::from_size_align(num_bytes, align).unwrap();
                unsafe {
                    alloc::dealloc(self.ptr.as_ptr() as *mut _, layout);
                }
            }
        }
    }
}

pub struct NomVec<T> {
    buf: RawVec<T>,
    len: usize,
}

impl<T> NomVec<T> {
    fn ptr(&self) -> *mut T {
        self.buf.ptr.as_ptr()
    }

    fn cap(&self) -> usize {
        self.buf.cap
    }

    pub fn new() -> Self {
        Self {
            buf: RawVec::new(),
            len: 0,
        }
    }

    pub fn push(&mut self, elem: T) {
        if self.len == self.cap() {
            self.buf.grow();
        }
        unsafe {
            ptr::write(self.ptr().offset(self.len as isize), elem);
        }
        // Can't fail, we'll OOM first.
        self.len += 1;
    }

    pub fn pop(&mut self) -> Option<T> {
        if self.len == 0 {
            None
        } else {
            self.len -= 1;
            unsafe { Some(ptr::read(self.ptr().offset(self.len as isize))) }
        }
    }

    pub fn len(&self) -> usize {
        self.len
    }

    pub fn insert(&mut self, index: usize, elem: T) {
        // Note: `<=` because it's valid to insert after everything
        // which would be equivalent to push.
        assert!(index <= self.len, "index out of bounds");
        if self.cap() == self.len {
            self.buf.grow();
        }
        unsafe {
            if index < self.len {
                ptr::copy(
                    self.ptr().offset(index as isize),
                    self.ptr().offset(index as isize + 1),
                    self.len - index,
                );
            }
            ptr::write(self.ptr().offset(index as isize), elem);
            self.len += 1;
        }
    }

    pub fn remove(&mut self, index: usize) -> T {
        assert!(index < self.len, "index out of bounds");
        unsafe {
            self.len -= 1;
            let result = ptr::read(self.ptr().offset(index as isize));
            ptr::copy(
                self.ptr().offset(index as isize + 1),
                self.ptr().offset(index as isize),
                self.len - index,
            );
            result
        }
    }

    pub fn drain(&mut self) -> Drain<T> {
        unsafe {
            let iter = RawValIter::new(&self);
            // this is a mem::forget safety thing. If Drain is forgotten, we just
            // leak the whole Vec's contents. Also we need to do this *eventually*
            // anyway, so why not do it now?
            self.len = 0;
            Drain {
                iter,
                vec: PhantomData,
            }
        }
    }
}

impl<T> Drop for NomVec<T> {
    fn drop(&mut self) {
        // deallocation is handled by RawVec
        while let Some(_) = self.pop() {}
    }
}

impl<T> Deref for NomVec<T> {
    type Target = [T];
    fn deref(&self) -> &[T] {
        unsafe { ::std::slice::from_raw_parts(self.ptr(), self.len) }
    }
}

impl<T> DerefMut for NomVec<T> {
    fn deref_mut(&mut self) -> &mut [T] {
        unsafe { ::std::slice::from_raw_parts_mut(self.ptr(), self.len) }
    }
}

impl<T> IntoIterator for NomVec<T> {
    type Item = T;
    type IntoIter = IntoIter<T>;

    fn into_iter(self) -> IntoIter<T> {
        unsafe {
            // need to use ptr::read to unsafely move the buf out since it's
            // not Copy, and Vec implements Drop (so we can't destructure it).
            let iter = RawValIter::new(&self);
            let buf = ptr::read(&self.buf);
            mem::forget(self);
            IntoIter { iter, _buf: buf }
        }
    }
}

struct RawValIter<T> {
    start: *const T,
    end: *const T,
}

impl<T> RawValIter<T> {
    // unsafe to construct because it has no associated lifetimes.
    // This is necessary to store a RawValIter in the same struct as
    // its actual allocation. OK since it's a private implementation
    // detail.
    unsafe fn new(slice: &[T]) -> Self {
        RawValIter {
            start: slice.as_ptr(),
            end: if mem::size_of::<T>() == 0 {
                ((slice.as_ptr() as usize) + slice.len()) as *const _
            } else if slice.len() == 0 {
                // if `len = 0`, then this is not actually allocated memory.
                // Need to avoid offsetting because that will give wrong
                // information to LLVM via GEP.
                slice.as_ptr()
            } else {
                slice.as_ptr().offset(slice.len() as isize)
            },
        }
    }
}

impl<T> Iterator for RawValIter<T> {
    type Item = T;
    fn next(&mut self) -> Option<T> {
        if self.start == self.end {
            None
        } else {
            unsafe {
                let result = ptr::read(self.start);
                self.start = if mem::size_of::<T>() == 0 {
                    (self.start as usize + 1) as *const _
                } else {
                    self.start.offset(1)
                };
                Some(result)
            }
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let len =
            (self.end as usize - self.start as usize) / mem::size_of::<T>();
        (len, Some(len))
    }
}

impl<T> DoubleEndedIterator for RawValIter<T> {
    fn next_back(&mut self) -> Option<T> {
        if self.start == self.end {
            None
        } else {
            unsafe {
                self.end = self.end.offset(-1);
                Some(ptr::read(self.end))
            }
        }
    }
}

pub struct IntoIter<T> {
    _buf: RawVec<T>,
    iter: RawValIter<T>,
}

impl<T> Iterator for IntoIter<T> {
    type Item = T;
    fn next(&mut self) -> Option<T> {
        self.iter.next()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<T> DoubleEndedIterator for IntoIter<T> {
    fn next_back(&mut self) -> Option<T> {
        self.iter.next_back()
    }
}

impl<T> Drop for IntoIter<T> {
    fn drop(&mut self) {
        // only need to ensure all our elements are read;
        // buffer will clean itself up afterwards.
        for _ in &mut self.iter {}
    }
}

pub struct Drain<'a, T: 'a> {
    // Need to bound the lifetime here, so we do it with `&'a mut Vec<T>`
    // because that's semantically what we contain. We're "just" calling
    // `pop()` and `remove(0)`.
    vec: PhantomData<&'a mut NomVec<T>>,
    iter: RawValIter<T>,
}

impl<'a, T> Iterator for Drain<'a, T> {
    type Item = T;
    fn next(&mut self) -> Option<T> {
        self.iter.next()
    }
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<'a, T> DoubleEndedIterator for Drain<'a, T> {
    fn next_back(&mut self) -> Option<T> {
        self.iter.next_back()
    }
}

impl<'a, T> Drop for Drain<'a, T> {
    fn drop(&mut self) {
        // pre-drain the iter
        for _ in &mut self.iter {}
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn vec_push() {
        let mut cv = NomVec::new();
        cv.push(2);
        assert_eq!(cv.len(), 1);
        cv.push(3);
        assert_eq!(cv.len(), 2);
    }

    #[test]
    fn vec_iter() {
        let mut cv = NomVec::new();
        cv.push(2);
        cv.push(3);
        let mut accum = 0;
        for x in cv.iter() {
            accum += x;
        }
        assert_eq!(accum, 5);
    }

    #[test]
    fn vec_into_iter() {
        let mut cv = NomVec::new();
        cv.push(2);
        cv.push(3);
        assert_eq!(cv.into_iter().collect::<Vec<i32>>(), vec![2, 3]);
    }

    #[test]
    fn vec_into_double_ended_iter() {
        let mut cv = NomVec::new();
        cv.push(2);
        cv.push(3);
        assert_eq!(*cv.iter().next_back().unwrap(), 3);
    }

    #[test]
    fn vec_pop() {
        let mut cv = NomVec::new();
        cv.push(2);
        assert_eq!(cv.len(), 1);
        cv.pop();
        assert_eq!(cv.len(), 0);
        assert!(cv.pop() == None);
    }

    #[test]
    fn vec_insert() {
        let mut cv: NomVec<i32> = NomVec::new();
        cv.insert(0, 2); // test insert at end
        cv.insert(0, 1); // test insert at beginning
        assert_eq!(cv.pop().unwrap(), 2);
    }

    #[test]
    fn vec_remove() {
        let mut cv = NomVec::new();
        cv.push(2);
        assert_eq!(cv.remove(0), 2);
        assert_eq!(cv.len(), 0);
    }

    #[test]
    #[should_panic(expected = "index out of bounds")]
    fn vec_cant_remove() {
        let mut cv: NomVec<i32> = NomVec::new();
        cv.remove(0);
    }

    #[test]
    fn vec_drain() {
        let mut cv = NomVec::new();
        cv.push(1);
        cv.push(2);
        cv.push(3);
        assert_eq!(cv.len(), 3);
        {
            let mut drain = cv.drain();
            assert_eq!(drain.next().unwrap(), 1);
            assert_eq!(drain.next_back().unwrap(), 3);
        }
        assert_eq!(cv.len(), 0);
    }

    #[test]
    fn vec_zst() {
        let mut v = NomVec::new();
        for _i in 0..10 {
            v.push(());
        }
        assert_eq!(v.len(), 10);

        let mut count = 0;
        for _ in v.into_iter() {
            count += 1
        }
        assert_eq!(10, count);
    }
}