1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
// Copyright © 2019-2020 VMware, Inc. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0 OR MIT

use alloc::alloc::{alloc, dealloc, Layout};

use core::cell::Cell;
use core::default::Default;
use core::fmt;
use core::mem::{align_of, size_of};
use core::ops::{Drop, FnMut};
use core::slice::from_raw_parts_mut;

#[cfg(not(loom))]
use core::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
#[cfg(loom)]
pub use loom::sync::atomic::{AtomicBool, AtomicUsize, Ordering};

use crossbeam_utils::CachePadded;

use crate::context::MAX_PENDING_OPS;
use crate::replica::MAX_THREADS_PER_REPLICA;

/// The default size of the shared log in bytes. If constructed using the
/// default constructor, the log will be these many bytes in size. Currently
/// set to 32 MiB based on the ASPLOS 2017 paper.
const DEFAULT_LOG_BYTES: usize = 32 * 1024 * 1024;
const_assert!(DEFAULT_LOG_BYTES >= 1 && (DEFAULT_LOG_BYTES & (DEFAULT_LOG_BYTES - 1) == 0));

/// The maximum number of replicas that can be registered with the log.
#[cfg(not(loom))]
pub const MAX_REPLICAS_PER_LOG: usize = 192;
#[cfg(loom)] // Otherwise uses too much stack space wich crashes in loom...
pub const MAX_REPLICAS_PER_LOG: usize = 3;

/// Constant required for garbage collection. When the tail and the head are
/// these many entries apart on the circular buffer, garbage collection will
/// be performed by one of the replicas registered with the log.
///
/// For the GC algorithm to work, we need to ensure that we can support the
/// largest possible append after deciding to perform GC. This largest possible
/// append is when every thread within a replica has a full batch of writes
/// to be appended to the shared log.
const GC_FROM_HEAD: usize = MAX_PENDING_OPS * MAX_THREADS_PER_REPLICA;
const_assert!(GC_FROM_HEAD >= 1 && (GC_FROM_HEAD & (GC_FROM_HEAD - 1) == 0));

/// Threshold after how many iterations we log a warning for busy spinning loops.
///
/// This helps with debugging to figure out where things may end up blocking.
/// Should be a power of two to avoid divisions.
const WARN_THRESHOLD: usize = 1 << 28;

/// An entry that sits on the log. Each entry consists of three fields: The operation to
/// be performed when a thread reaches this entry on the log, the replica that appended
/// this operation, and a flag indicating whether this entry is valid.
///
/// `T` is the type on the operation - typically an enum class containing opcodes as well as
/// arguments. It is required that this type be sized and cloneable.
#[derive(Default)]
#[repr(align(64))]
struct Entry<T>
where
    T: Sized + Clone,
{
    /// The operation that this entry represents.
    operation: Option<T>,

    /// Identifies the replica that issued the above operation.
    replica: usize,

    /// Indicates whether this entry represents a valid operation when on the log.
    alivef: AtomicBool,
}

/// A log of operations that is typically accessed by multiple
/// [Replica](struct.Replica.html).
///
/// Operations can be added to the log by calling the `append()` method and
/// providing a list of operations to be performed.
///
/// Operations already on the log can be executed by calling the `exec()` method
/// and providing a replica-id along with a closure. Newly added operations
/// since the replica last called `exec()` will be executed by invoking the
/// supplied closure for each one of them.
///
/// Accepts one generic type parameter; `T` defines the type of operations and
/// their arguments that will go on the log and would typically be an enum
/// class.
///
/// This struct is aligned to 64 bytes optimizing cache access.\
///
/// # Note
/// As a client, typically there is no need to call any methods on the Log aside
/// from `new`. Only in the rare circumstance someone would implement their own
/// Replica would it be necessary to call any of the Log's methods.
#[repr(align(64))]
pub struct Log<'a, T>
where
    T: Sized + Clone,
{
    /// Raw pointer to the actual underlying log. Required for dealloc.
    rawp: *mut u8,

    /// Size of the underlying log in bytes. Required for dealloc.
    rawb: usize,

    /// The maximum number of entries that can be held inside the log.
    size: usize,

    /// A reference to the actual log. Nothing but a slice of entries.
    slog: &'a [Cell<Entry<T>>],

    /// Logical index into the above slice at which the log starts.
    head: CachePadded<AtomicUsize>,

    /// Logical index into the above slice at which the log ends.
    /// New appends go here.
    tail: CachePadded<AtomicUsize>,

    /// Completed tail maintains an index <= tail that points to a
    /// log entry after which there are no completed operations across
    /// all replicas registered against this log.
    ctail: CachePadded<AtomicUsize>,

    /// Array consisting of the local tail of each replica registered with the log.
    /// Required for garbage collection; since replicas make progress over the log
    /// independently, we want to make sure that we don't garbage collect operations
    /// that haven't been executed by all replicas.
    ltails: [CachePadded<AtomicUsize>; MAX_REPLICAS_PER_LOG],

    /// Identifier that will be allocated to the next replica that registers with
    /// this Log. Also required to correctly index into ltails above.
    next: CachePadded<AtomicUsize>,

    /// Array consisting of local alive masks for each registered replica. Required
    /// because replicas make independent progress over the log, so we need to
    /// track log wrap-arounds for each of them separately.
    lmasks: [CachePadded<Cell<bool>>; MAX_REPLICAS_PER_LOG],
}

impl<'a, T> fmt::Debug for Log<'a, T>
where
    T: Sized + Clone,
{
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt.debug_struct("Log")
            .field("head", &self.tail)
            .field("tail", &self.head)
            .field("size", &self.size)
            .finish()
    }
}

/// The Log is Send. The *mut u8 (`rawp`) is never dereferenced.
unsafe impl<'a, T> Send for Log<'a, T> where T: Sized + Clone {}

/// The Log is Sync. We know this because: `head` and `tail` are atomic variables, `append()`
/// reserves entries using a CAS, and exec() does not concurrently mutate entries on the log.
unsafe impl<'a, T> Sync for Log<'a, T> where T: Sized + Clone {}

impl<'a, T> Log<'a, T>
where
    T: Sized + Clone,
{
    /// Constructs and returns a log of size `bytes` bytes.
    /// A size between 1-2 MiB usually works well in most cases.
    ///
    /// # Example
    ///
    /// ```
    /// use node_replication::Log;
    ///
    /// // Operation type that will go onto the log.
    /// #[derive(Clone)]
    /// enum Operation {
    ///     Read,
    ///     Write(u64),
    ///     Invalid,
    /// }
    ///
    /// // Creates a 1 Mega Byte sized log.
    /// let l = Log::<Operation>::new(1 * 1024 * 1024);
    /// ```
    ///
    /// This method also allocates memory for the log upfront. No further allocations
    /// will be performed once this method returns.
    pub fn new<'b>(bytes: usize) -> Log<'b, T> {
        // Calculate the number of entries that will go into the log, and retrieve a
        // slice to it from the allocated region of memory.
        let mut num = bytes / Log::<T>::entry_size();

        // Make sure the log is large enough to allow for periodic garbage collection.
        if num < 2 * GC_FROM_HEAD {
            num = 2 * GC_FROM_HEAD;
        }

        // Round off to the next power of two if required. If we overflow, then set
        // the number of entries to the minimum required for GC. This is unlikely since
        // we'd need a log size > 2^63 entries for this to happen.
        if !num.is_power_of_two() {
            num = num.checked_next_power_of_two().unwrap_or(2 * GC_FROM_HEAD)
        };

        // Now that we have the actual number of entries, allocate the log.
        let b = num * Log::<T>::entry_size();
        let mem = unsafe {
            alloc(
                Layout::from_size_align(b, align_of::<Cell<Entry<T>>>())
                    .expect("Alignment error while allocating the shared log!"),
            )
        };
        if mem.is_null() {
            panic!("Failed to allocate memory for the shared log!");
        }
        let raw = unsafe { from_raw_parts_mut(mem as *mut Cell<Entry<T>>, num) };

        // Initialize all log entries by calling the default constructor.
        for e in raw.iter_mut() {
            unsafe {
                ::core::ptr::write(
                    e,
                    Cell::new(Entry {
                        operation: None,
                        replica: 0usize,
                        alivef: AtomicBool::new(false),
                    }),
                );
            }
        }

        #[allow(clippy::declare_interior_mutable_const)]
        const LMASK_DEFAULT: CachePadded<Cell<bool>> = CachePadded::new(Cell::new(true));

        #[cfg(not(loom))]
        {
            #[allow(clippy::declare_interior_mutable_const)]
            const LTAIL_DEFAULT: CachePadded<AtomicUsize> = CachePadded::new(AtomicUsize::new(0));

            Log {
                rawp: mem,
                rawb: b,
                size: num,
                slog: raw,
                head: CachePadded::new(AtomicUsize::new(0usize)),
                tail: CachePadded::new(AtomicUsize::new(0usize)),
                ctail: CachePadded::new(AtomicUsize::new(0usize)),
                ltails: [LTAIL_DEFAULT; MAX_REPLICAS_PER_LOG],
                next: CachePadded::new(AtomicUsize::new(1usize)),
                lmasks: [LMASK_DEFAULT; MAX_REPLICAS_PER_LOG],
            }
        }
        // AtomicUsize::new is not const in loom. This code block (including arr
        // dependency) becomes redundant once
        // https://github.com/tokio-rs/loom/issues/170 is fixed:
        #[cfg(loom)]
        {
            use arr_macro::arr;
            Log {
                rawp: mem,
                rawb: b,
                size: num,
                slog: raw,
                head: CachePadded::new(AtomicUsize::new(0usize)),
                tail: CachePadded::new(AtomicUsize::new(0usize)),
                ctail: CachePadded::new(AtomicUsize::new(0usize)),
                ltails: arr![CachePadded::new(AtomicUsize::new(0)); 3], // MAX_REPLICAS_PER_LOG
                next: CachePadded::new(AtomicUsize::new(1usize)),
                lmasks: [LMASK_DEFAULT; MAX_REPLICAS_PER_LOG],
            }
        }
    }

    /// Returns the size of an entry in bytes.
    fn entry_size() -> usize {
        size_of::<Cell<Entry<T>>>()
    }

    /// Registers a replica with the log. Returns an identifier that the replica
    /// can use to execute operations on the log.
    ///
    /// # Example
    ///
    /// ```ignore
    /// use node_replication::Log;
    ///
    /// // Operation type that will go onto the log.
    /// #[derive(Clone)]
    /// enum Operation {
    ///    Read,
    ///    Write(u64),
    ///    Invalid,
    /// }
    ///
    /// // Creates a 1 Mega Byte sized log.
    /// let l = Log::<Operation>::new(1 * 1024 * 1024);
    ///
    /// // Registers against the log. `idx` can now be used to append operations
    /// // to the log, and execute these operations.
    /// let idx = l.register().expect("Failed to register with the Log.");
    /// ```
    pub(crate) fn register(&self) -> Option<usize> {
        // Loop until we either run out of identifiers or we manage to increment `next`.
        loop {
            let n = self.next.load(Ordering::Relaxed);

            // Check if we've exceeded the maximum number of replicas the log can support.
            if n >= MAX_REPLICAS_PER_LOG {
                return None;
            };

            if self
                .next
                .compare_exchange_weak(n, n + 1, Ordering::SeqCst, Ordering::SeqCst)
                != Ok(n)
            {
                continue;
            };

            return Some(n);
        }
    }

    /// Adds a batch of operations to the shared log.
    ///
    /// # Example
    ///
    /// ```ignore
    /// use node_replication::Log;
    ///
    /// // Operation type that will go onto the log.
    /// #[derive(Clone)]
    /// enum Operation {
    ///     Read,
    ///     Write(u64),
    /// }
    ///
    /// let l = Log::<Operation>::new(1 * 1024 * 1024);
    /// let idx = l.register().expect("Failed to register with the Log.");
    ///
    /// // The set of operations we would like to append. The order will
    /// // be preserved by the interface.
    /// let ops = [Operation::Write(100), Operation::Read];
    ///
    /// // `append()` might have to garbage collect the log. When doing so,
    /// // it might encounter operations added in by another replica/thread.
    /// // This closure allows us to consume those operations. `id` identifies
    /// // the replica that added in those operations.
    /// let f = |op: Operation, id: usize| {
    ///     match(op) {
    ///         Operation::Read => println!("Read by {}", id),
    ///         Operation::Write(x) => println!("Write({}) by {}", x, id),
    ///     }
    /// };
    ///
    /// // Append the operations. These operations will be marked with `idx`,
    /// // and will be linearized at the tail of the log.
    /// l.append(&ops, idx, f);
    /// ```
    ///
    /// If there isn't enough space to perform the append, this method busy
    /// waits until the head is advanced. Accepts a replica `idx`; all appended
    /// operations/entries will be marked with this replica-identifier. Also
    /// accepts a closure `s`; when waiting for GC, this closure is passed into
    /// exec() to ensure that this replica does'nt cause a deadlock.
    ///
    /// # Note
    /// Documentation for this function is hidden since `append` is currently not
    /// intended as a public interface. It is marked as public due to being
    /// used by the benchmarking code.
    #[inline(always)]
    #[doc(hidden)]
    pub fn append<F: FnMut(T, usize)>(&self, ops: &[T], idx: usize, mut s: F) {
        let nops = ops.len();
        let mut iteration = 1;
        let mut waitgc = 1;

        // Keep trying to reserve entries and add operations to the log until
        // we succeed in doing so.
        loop {
            if iteration % WARN_THRESHOLD == 0 {
                warn!(
                    "append(ops.len()={}, {}) takes too many iterations ({}) to complete...",
                    ops.len(),
                    idx,
                    iteration,
                );
            }
            iteration += 1;

            let tail = self.tail.load(Ordering::Relaxed);
            let head = self.head.load(Ordering::Relaxed);

            // If there are fewer than `GC_FROM_HEAD` entries on the log, then just
            // try again. The replica that reserved entry (h + self.size - GC_FROM_HEAD)
            // is currently trying to advance the head of the log. Keep refreshing the
            // replica against the log to make sure that it isn't deadlocking GC.
            if tail > head + self.size - GC_FROM_HEAD {
                if waitgc % WARN_THRESHOLD == 0 {
                    warn!(
                        "append(ops.len()={}, {}) takes too many iterations ({}) waiting for gc...",
                        ops.len(),
                        idx,
                        waitgc,
                    );
                }
                waitgc += 1;
                self.exec(idx, &mut s);

                #[cfg(loom)]
                loom::thread::yield_now();
                continue;
            }

            // If on adding in the above entries there would be fewer than `GC_FROM_HEAD`
            // entries left on the log, then we need to advance the head of the log.
            let mut advance = false;
            if tail + nops > head + self.size - GC_FROM_HEAD {
                advance = true
            };

            // Try reserving slots for the operations. If that fails, then restart
            // from the beginning of this loop.
            if self.tail.compare_exchange_weak(
                tail,
                tail + nops,
                Ordering::Acquire,
                Ordering::Acquire,
            ) != Ok(tail)
            {
                continue;
            };

            // Successfully reserved entries on the shared log. Add the operations in.
            for (i, op) in ops.iter().enumerate().take(nops) {
                let e = self.slog[self.index(tail + i)].as_ptr();
                let mut m = self.lmasks[idx - 1].get();

                // This entry was just reserved so it should be dead (!= m). However, if
                // the log has wrapped around, then the alive mask has flipped. In this
                // case, we flip the mask we were originally going to write into the
                // allocated entry. We cannot flip lmasks[idx - 1] because this replica
                // might still need to execute a few entries before the wrap around.
                if unsafe { (*e).alivef.load(Ordering::Relaxed) == m } {
                    m = !m;
                }

                unsafe { (*e).operation = Some(op.clone()) };
                unsafe { (*e).replica = idx };
                unsafe { (*e).alivef.store(m, Ordering::Release) };
            }

            // If needed, advance the head of the log forward to make room on the log.
            if advance {
                self.advance_head(idx, &mut s);
            }

            return;
        }
    }

    /// Executes a passed in closure (`d`) on all operations starting from
    /// a replica's local tail on the shared log. The replica is identified through an
    /// `idx` passed in as an argument.
    ///
    /// # Example
    ///
    /// ```ignore
    /// use node_replication::Log;
    ///
    /// // Operation type that will go onto the log.
    /// #[derive(Clone)]
    /// enum Operation {
    ///     Read,
    ///     Write(u64),
    /// }
    ///
    /// let l = Log::<Operation>::new(1 * 1024 * 1024);
    /// let idx = l.register().expect("Failed to register with the Log.");
    /// let ops = [Operation::Write(100), Operation::Read];
    ///
    /// let f = |op: Operation, id: usize| {
    ///     match(op) {
    ///         Operation::Read => println!("Read by {}", id),
    ///         Operation::Write(x) => println!("Write({}) by {}", x, id),
    ///     }
    /// };
    /// l.append(&ops, idx, f);
    ///
    /// // This closure is executed on every operation appended to the
    /// // since the last call to `exec()` by this replica/thread.
    /// let mut d = 0;
    /// let mut g = |op: Operation, id: usize| {
    ///     match(op) {
    ///         // The write happened before the read.
    ///         Operation::Read => assert_eq!(100, d),
    ///         Operation::Write(x) => d += 100,
    ///     }
    /// };
    /// l.exec(idx, &mut g);
    /// ```
    ///
    /// The passed in closure is expected to take in two arguments: The operation
    /// from the shared log to be executed and the replica that issued it.
    #[inline(always)]
    pub(crate) fn exec<F: FnMut(T, usize)>(&self, idx: usize, d: &mut F) {
        // Load the logical log offset from which we must execute operations.
        let ltail = self.ltails[idx - 1].load(Ordering::Relaxed);

        // Check if we have any work to do by comparing our local tail with the log's
        // global tail. If they're equal, then we're done here and can simply return.
        let gtail = self.tail.load(Ordering::Relaxed);
        if ltail == gtail {
            return;
        }

        let h = self.head.load(Ordering::Relaxed);

        // Make sure we're within the shared log. If we aren't, then panic.
        if ltail > gtail || ltail < h {
            panic!("Local tail not within the shared log!")
        };

        // Execute all operations from the passed in offset to the shared log's tail. Check if
        // the entry is live first; we could have a replica that has reserved entries, but not
        // filled them into the log yet.
        for i in ltail..gtail {
            let mut iteration = 1;
            let e = self.slog[self.index(i)].as_ptr();

            while unsafe { (*e).alivef.load(Ordering::Acquire) != self.lmasks[idx - 1].get() } {
                if iteration % WARN_THRESHOLD == 0 {
                    warn!(
                        "alivef not being set for self.index(i={}) = {} (self.lmasks[{}] is {})...",
                        i,
                        self.index(i),
                        idx - 1,
                        self.lmasks[idx - 1].get()
                    );
                }
                iteration += 1;

                #[cfg(loom)]
                loom::thread::yield_now();
            }

            unsafe { d((*e).operation.as_ref().unwrap().clone(), (*e).replica) };

            // Looks like we're going to wrap around now; flip this replica's local mask.
            if self.index(i) == self.size - 1 {
                self.lmasks[idx - 1].set(!self.lmasks[idx - 1].get());
                //trace!("idx: {} lmask: {}", idx, self.lmasks[idx - 1].get());
            }
        }

        // Update the completed tail after we've executed these operations.
        // Also update this replica's local tail.
        self.ctail.fetch_max(gtail, Ordering::Relaxed);
        self.ltails[idx - 1].store(gtail, Ordering::Relaxed);
    }

    /// Returns a physical index given a logical index into the shared log.
    #[inline(always)]
    fn index(&self, logical: usize) -> usize {
        logical & (self.size - 1)
    }

    /// Advances the head of the log forward. If a replica has stopped making progress,
    /// then this method will never return. Accepts a closure that is passed into exec()
    /// to ensure that this replica does not deadlock GC.
    #[inline(always)]
    fn advance_head<F: FnMut(T, usize)>(&self, rid: usize, mut s: &mut F) {
        // Keep looping until we can advance the head and create some free space
        // on the log. If one of the replicas has stopped making progress, then
        // this method might never return.
        let mut iteration = 1;
        loop {
            let r = self.next.load(Ordering::Relaxed);
            let global_head = self.head.load(Ordering::Relaxed);
            let f = self.tail.load(Ordering::Relaxed);

            let mut min_local_tail = self.ltails[0].load(Ordering::Relaxed);

            // Find the smallest local tail across all replicas.
            for idx in 1..r {
                let cur_local_tail = self.ltails[idx - 1].load(Ordering::Relaxed);
                if min_local_tail > cur_local_tail {
                    min_local_tail = cur_local_tail
                };
            }

            // If we cannot advance the head further, then start
            // from the beginning of this loop again. Before doing so, try consuming
            // any new entries on the log to prevent deadlock.
            if min_local_tail == global_head {
                if iteration % WARN_THRESHOLD == 0 {
                    warn!("Spending a long time in `advance_head`, are we starving?");
                }
                iteration += 1;
                self.exec(rid, &mut s);

                #[cfg(loom)]
                loom::thread::yield_now();
                continue;
            }

            // There are entries that can be freed up; update the head offset.
            self.head.store(min_local_tail, Ordering::Relaxed);

            // Make sure that we freed up enough space so that threads waiting for
            // GC in append can make progress. Otherwise, try to make progress again.
            // If we're making progress again, then try consuming entries on the log.
            if f < min_local_tail + self.size - GC_FROM_HEAD {
                return;
            } else {
                self.exec(rid, &mut s);
            }
        }
    }

    /// Resets the log. Required for microbenchmarking the log; with this method, we
    /// can re-use the log across experimental runs without having to re-allocate the
    /// log over and over again.
    ///
    /// # Safety
    ///
    /// *To be used for testing/benchmarking only, hence marked unsafe*. Before calling
    /// this method, please make sure that there aren't any replicas/threads actively
    /// issuing/executing operations to/from this log.
    #[doc(hidden)]
    #[inline(always)]
    pub unsafe fn reset(&self) {
        // First, reset global metadata.
        self.head.store(0, Ordering::SeqCst);
        self.tail.store(0, Ordering::SeqCst);
        self.next.store(1, Ordering::SeqCst);

        // Next, reset replica-local metadata.
        for r in 0..MAX_REPLICAS_PER_LOG {
            self.ltails[r].store(0, Ordering::Relaxed);
            self.lmasks[r].set(true);
        }

        // Next, free up all log entries. Use pointers to avoid memcpy and speed up
        // the reset of the log here.
        for i in 0..self.size {
            let e = self.slog[self.index(i)].as_ptr();
            (*e).alivef.store(false, Ordering::Release);
        }
    }

    /// This method checks if the replica is in sync to execute a read-only operation
    /// right away. It does so by comparing the replica's local tail with the log's
    /// completed tail.
    ///
    /// # Example
    ///
    /// ```ignore
    /// use node_replication::Log;
    ///
    /// // Operation type that will go onto the log.
    /// #[derive(Clone)]
    /// enum Operation {
    ///     Read,
    ///     Write(u64),
    /// }
    ///
    /// // We register two replicas here, `idx1` and `idx2`.
    /// let l = Log::<Operation>::new(1 * 1024 * 1024);
    /// let idx1 = l.register().expect("Failed to register with the Log.");
    /// let idx2 = l.register().expect("Failed to register with the Log.");
    /// let ops = [Operation::Write(100), Operation::Read];
    ///
    /// let f = |op: Operation, id: usize| {
    ///     match(op) {
    ///         Operation::Read => println!("Read by {}", id),
    ///         Operation::Write(x) => println!("Write({}) by {}", x, id),
    ///     }
    /// };
    /// l.append(&ops, idx2, f);
    ///
    /// let mut d = 0;
    /// let mut g = |op: Operation, id: usize| {
    ///     match(op) {
    ///         // The write happened before the read.
    ///         Operation::Read => assert_eq!(100, d),
    ///         Operation::Write(x) => d += 100,
    ///     }
    /// };
    /// l.exec(idx2, &mut g);
    ///
    /// // This assertion fails because `idx1` has not executed operations
    /// // that were appended by `idx2`.
    /// assert_eq!(false, l.is_replica_synced_for_reads(idx1, l.get_ctail()));
    ///
    /// let mut e = 0;
    /// let mut g = |op: Operation, id: usize| {
    ///     match(op) {
    ///         // The write happened before the read.
    ///         Operation::Read => assert_eq!(100, e),
    ///         Operation::Write(x) => e += 100,
    ///     }
    /// };
    /// l.exec(idx1, &mut g);
    ///
    /// // `idx1` is all synced up, so this assertion passes.
    /// assert_eq!(true, l.is_replica_synced_for_reads(idx1, l.get_ctail()));
    /// ```
    #[inline(always)]
    pub(crate) fn is_replica_synced_for_reads(&self, idx: usize, ctail: usize) -> bool {
        self.ltails[idx - 1].load(Ordering::Relaxed) >= ctail
    }

    /// This method returns the current ctail value for the log.
    #[inline(always)]
    pub(crate) fn get_ctail(&self) -> usize {
        self.ctail.load(Ordering::Relaxed)
    }
}

impl<'a, T> Default for Log<'a, T>
where
    T: Sized + Clone,
{
    /// Default constructor for the shared log.
    fn default() -> Self {
        Log::new(DEFAULT_LOG_BYTES)
    }
}

impl<'a, T> Drop for Log<'a, T>
where
    T: Sized + Clone,
{
    /// Destructor for the shared log.
    fn drop(&mut self) {
        unsafe {
            dealloc(
                self.rawp,
                Layout::from_size_align(self.rawb, align_of::<Cell<Entry<T>>>())
                    .expect("Alignment error while deallocating the shared log!"),
            )
        };
    }
}

#[cfg(test)]
mod tests {
    // Import std so that we have an allocator for our unit tests.
    extern crate std;

    use super::*;
    use std::sync::Arc;

    // Define operations along with their arguments that go onto the log.
    #[derive(Clone)] // Traits required by the log interface.
    #[derive(Debug, PartialEq)] // Traits required for testing.
    enum Operation {
        Read,
        Write(u64),
        Invalid,
    }

    // Required so that we can unit test Entry.
    impl Default for Operation {
        fn default() -> Operation {
            Operation::Invalid
        }
    }

    // Test that we can default construct entries correctly.
    #[test]
    fn test_entry_create_default() {
        let e = Entry::<Operation>::default();
        assert_eq!(e.operation, None);
        assert_eq!(e.replica, 0);
        assert_eq!(e.alivef.load(Ordering::Relaxed), false);
    }

    // Test that our entry_size() method returns the correct size.
    #[test]
    fn test_log_entry_size() {
        assert_eq!(Log::<Operation>::entry_size(), 64);
    }

    // Tests if a small log can be correctly constructed.
    #[test]
    fn test_log_create() {
        let l = Log::<Operation>::new(1024 * 1024);
        let n = (1024 * 1024) / Log::<Operation>::entry_size();
        assert_eq!(l.rawb, 1024 * 1024);
        assert_eq!(l.size, n);
        assert_eq!(l.slog.len(), n);
        assert_eq!(l.head.load(Ordering::Relaxed), 0);
        assert_eq!(l.tail.load(Ordering::Relaxed), 0);
        assert_eq!(l.next.load(Ordering::Relaxed), 1);
        assert_eq!(l.ctail.load(Ordering::Relaxed), 0);

        for i in 0..MAX_REPLICAS_PER_LOG {
            assert_eq!(l.ltails[i].load(Ordering::Relaxed), 0);
        }

        for i in 0..MAX_REPLICAS_PER_LOG {
            assert_eq!(l.lmasks[i].get(), true);
        }
    }

    // Tests if the constructor allocates enough space for GC.
    #[test]
    fn test_log_min_size() {
        let l = Log::<Operation>::new(1024);
        assert_eq!(l.rawb, 2 * GC_FROM_HEAD * Log::<Operation>::entry_size());
        assert_eq!(l.size, 2 * GC_FROM_HEAD);
        assert_eq!(l.slog.len(), 2 * GC_FROM_HEAD);
    }

    // Tests that the constructor allocates a log whose number of entries
    // are a power of two.
    #[test]
    fn test_log_power_of_two() {
        let l = Log::<Operation>::new(524 * 1024);
        let n = ((524 * 1024) / Log::<Operation>::entry_size()).checked_next_power_of_two();
        assert_eq!(l.rawb, n.unwrap() * Log::<Operation>::entry_size());
        assert_eq!(l.size, n.unwrap());
        assert_eq!(l.slog.len(), n.unwrap());
    }

    // Tests if the log can be successfully default constructed.
    #[test]
    fn test_log_create_default() {
        let l = Log::<Operation>::default();
        let n = DEFAULT_LOG_BYTES / Log::<Operation>::entry_size();
        assert_eq!(l.rawb, DEFAULT_LOG_BYTES);
        assert_eq!(l.size, n);
        assert_eq!(l.slog.len(), n);
        assert_eq!(l.head.load(Ordering::Relaxed), 0);
        assert_eq!(l.tail.load(Ordering::Relaxed), 0);
        assert_eq!(l.next.load(Ordering::Relaxed), 1);
        assert_eq!(l.ctail.load(Ordering::Relaxed), 0);

        for i in 0..MAX_REPLICAS_PER_LOG {
            assert_eq!(l.ltails[i].load(Ordering::Relaxed), 0);
        }

        for i in 0..MAX_REPLICAS_PER_LOG {
            assert_eq!(l.lmasks[i].get(), true);
        }
    }

    // Tests if we can correctly index into the shared log.
    #[test]
    fn test_log_index() {
        let l = Log::<Operation>::new(2 * 1024 * 1024);
        assert_eq!(l.index(99000), 696);
    }

    // Tests if we can correctly register with the shared log.
    #[test]
    fn test_log_register() {
        let l = Log::<Operation>::new(1024);
        assert_eq!(l.register(), Some(1));
        assert_eq!(l.next.load(Ordering::Relaxed), 2);
    }

    // Tests that we cannot register more than the max replicas with the log.
    #[test]
    fn test_log_register_none() {
        let l = Log::<Operation>::new(1024);
        l.next.store(MAX_REPLICAS_PER_LOG, Ordering::Relaxed);
        assert!(l.register().is_none());
        assert_eq!(l.next.load(Ordering::Relaxed), MAX_REPLICAS_PER_LOG);
    }

    // Test that we can correctly append an entry into the log.
    #[test]
    fn test_log_append() {
        let l = Log::<Operation>::default();
        let o = [Operation::Read];
        l.append(&o, 1, |_o: Operation, _i: usize| {});

        assert_eq!(l.head.load(Ordering::Relaxed), 0);
        assert_eq!(l.tail.load(Ordering::Relaxed), 1);
        let slog = l.slog[0].take();
        assert_eq!(slog.operation, Some(Operation::Read));
        assert_eq!(slog.replica, 1);
    }

    // Test that multiple entries can be appended to the log.
    #[test]
    fn test_log_append_multiple() {
        let l = Log::<Operation>::default();
        let o = [Operation::Read, Operation::Write(119)];
        l.append(&o, 1, |_o: Operation, _i: usize| {});

        assert_eq!(l.head.load(Ordering::Relaxed), 0);
        assert_eq!(l.tail.load(Ordering::Relaxed), 2);
    }

    // Tests that we can advance the head of the log to the smallest of all replica-local tails.
    #[test]
    fn test_log_advance_head() {
        let l = Log::<Operation>::default();

        l.next.store(5, Ordering::Relaxed);
        l.ltails[0].store(1023, Ordering::Relaxed);
        l.ltails[1].store(224, Ordering::Relaxed);
        l.ltails[2].store(4096, Ordering::Relaxed);
        l.ltails[3].store(799, Ordering::Relaxed);

        l.advance_head(0, &mut |_o: Operation, _i: usize| {});
        assert_eq!(l.head.load(Ordering::Relaxed), 224);
    }

    // Tests that the head of the log is advanced when we're close to filling up the entire log.
    #[test]
    fn test_log_append_gc() {
        let l = Log::<Operation>::default();
        let o: [Operation; 4] = unsafe {
            let mut a: [Operation; 4] = ::std::mem::MaybeUninit::zeroed().assume_init();
            for i in &mut a[..] {
                ::std::ptr::write(i, Operation::Read);
            }
            a
        };

        l.next.store(2, Ordering::Relaxed);
        l.tail.store(l.size - GC_FROM_HEAD - 1, Ordering::Relaxed);
        l.ltails[0].store(1024, Ordering::Relaxed);
        l.append(&o, 1, |_o: Operation, _i: usize| {});

        assert_eq!(l.head.load(Ordering::Relaxed), 1024);
        assert_eq!(l.tail.load(Ordering::Relaxed), l.size - GC_FROM_HEAD + 3);
    }

    // Tests that on log wrap around, the local mask stays
    // the same because entries have not been executed yet.
    #[test]
    fn test_log_append_wrap() {
        let l = Log::<Operation>::default();
        let o: [Operation; 1024] = unsafe {
            let mut a: [Operation; 1024] = ::std::mem::MaybeUninit::zeroed().assume_init();
            for i in &mut a[..] {
                ::std::ptr::write(i, Operation::Read);
            }
            a
        };

        l.next.store(2, Ordering::Relaxed);
        l.head.store(2 * 8192, Ordering::Relaxed);
        l.tail.store(l.size - 10, Ordering::Relaxed);
        l.append(&o, 1, |_o: Operation, _i: usize| {});

        assert_eq!(l.lmasks[0].get(), true);
        assert_eq!(l.tail.load(Ordering::Relaxed), l.size + 1014);
    }

    // Test that we can execute operations appended to the log.
    #[test]
    fn test_log_exec() {
        let l = Log::<Operation>::default();
        let o = [Operation::Read];
        let mut f = |op: Operation, i: usize| {
            assert_eq!(op, Operation::Read);
            assert_eq!(i, 1);
        };

        l.append(&o, 1, |_o: Operation, _i: usize| {});
        l.exec(1, &mut f);

        assert_eq!(
            l.tail.load(Ordering::Relaxed),
            l.ctail.load(Ordering::Relaxed)
        );
        assert_eq!(
            l.tail.load(Ordering::Relaxed),
            l.ltails[0].load(Ordering::Relaxed)
        );
    }

    // Test that exec() doesn't do anything when the log is empty.
    #[test]
    fn test_log_exec_empty() {
        let l = Log::<Operation>::default();
        let mut f = |_o: Operation, _i: usize| {
            assert!(false);
        };

        l.exec(1, &mut f);
    }

    // Test that exec() doesn't do anything if we're already up-to-date.
    #[test]
    fn test_log_exec_zero() {
        let l = Log::<Operation>::default();
        let o = [Operation::Read];
        let mut f = |op: Operation, i: usize| {
            assert_eq!(op, Operation::Read);
            assert_eq!(i, 1);
        };
        let mut g = |_op: Operation, _i: usize| {
            assert!(false);
        };

        l.append(&o, 1, |_o: Operation, _i: usize| {});
        l.exec(1, &mut f);
        l.exec(1, &mut g);
    }

    // Test that multiple entries on the log can be executed correctly.
    #[test]
    fn test_log_exec_multiple() {
        let l = Log::<Operation>::default();
        let o = [Operation::Read, Operation::Write(119)];
        let mut s = 0;
        let mut f = |op: Operation, _i: usize| match op {
            Operation::Read => s += 121,
            Operation::Write(v) => s += v,
            Operation::Invalid => assert!(false),
        };

        l.append(&o, 1, |_o: Operation, _i: usize| {});
        l.exec(1, &mut f);
        assert_eq!(s, 240);

        assert_eq!(
            l.tail.load(Ordering::Relaxed),
            l.ctail.load(Ordering::Relaxed)
        );
        assert_eq!(
            l.tail.load(Ordering::Relaxed),
            l.ltails[0].load(Ordering::Relaxed)
        );
    }

    // Test that the replica local mask is updated correctly when executing over
    // a wrapped around log.
    #[test]
    fn test_log_exec_wrap() {
        let l = Log::<Operation>::default();
        let o: [Operation; 1024] = unsafe {
            let mut a: [Operation; 1024] = ::std::mem::MaybeUninit::zeroed().assume_init();
            for i in &mut a[..] {
                ::std::ptr::write(i, Operation::Read);
            }
            a
        };
        let mut f = |op: Operation, i: usize| {
            assert_eq!(op, Operation::Read);
            assert_eq!(i, 1);
        };

        l.append(&o, 1, |_o: Operation, _i: usize| {}); // Required for GC to work correctly.
        l.next.store(2, Ordering::SeqCst);
        l.head.store(2 * 8192, Ordering::SeqCst);
        l.tail.store(l.size - 10, Ordering::SeqCst);
        l.append(&o, 1, |_o: Operation, _i: usize| {});

        l.ltails[0].store(l.size - 10, Ordering::SeqCst);
        l.exec(1, &mut f);

        assert_eq!(l.lmasks[0].get(), false);
        assert_eq!(l.tail.load(Ordering::Relaxed), l.size + 1014);
    }

    // Tests that exec() panics if the head of the log advances beyond the tail.
    #[test]
    #[should_panic]
    fn test_exec_panic() {
        let l = Log::<Operation>::default();
        let o: [Operation; 1024] = unsafe {
            let mut a: [Operation; 1024] = ::std::mem::MaybeUninit::zeroed().assume_init();
            for i in &mut a[..] {
                ::std::ptr::write(i, Operation::Read);
            }
            a
        };
        let mut f = |_op: Operation, _i: usize| {
            assert!(false);
        };

        l.append(&o, 1, |_o: Operation, _i: usize| {});
        l.head.store(8192, Ordering::SeqCst);

        l.exec(1, &mut f);
    }

    // Tests that operations are cloned when added to the log, and that
    // they are correctly dropped once overwritten.
    #[test]
    fn test_log_change_refcount() {
        let l = Log::<Arc<Operation>>::default();
        let o1 = [Arc::new(Operation::Read)];
        let o2 = [Arc::new(Operation::Read)];
        assert_eq!(Arc::strong_count(&o1[0]), 1);
        assert_eq!(Arc::strong_count(&o2[0]), 1);

        l.append(&o1[..], 1, |_o: Arc<Operation>, _i: usize| {});
        assert_eq!(Arc::strong_count(&o1[0]), 2);
        l.append(&o1[..], 1, |_o: Arc<Operation>, _i: usize| {});
        assert_eq!(Arc::strong_count(&o1[0]), 3);

        unsafe { l.reset() };

        // Over here, we overwrite entries that were written to by the two
        // previous appends. This decreases the refcount of o1 and increases
        // the refcount of o2.
        l.append(&o2[..], 1, |_o: Arc<Operation>, _i: usize| {});
        assert_eq!(Arc::strong_count(&o1[0]), 2);
        assert_eq!(Arc::strong_count(&o2[0]), 2);
        l.append(&o2[..], 1, |_o: Arc<Operation>, _i: usize| {});
        assert_eq!(Arc::strong_count(&o1[0]), 1);
        assert_eq!(Arc::strong_count(&o2[0]), 3);
    }

    // Tests that operations are cloned when added to the log, and that
    // they are correctly dropped once overwritten after the GC.
    #[test]
    fn test_log_refcount_change_with_gc() {
        let entry_size = 64;
        let total_entries = 16384;

        assert_eq!(Log::<Arc<Operation>>::entry_size(), entry_size);
        let size: usize = total_entries * entry_size;
        let l = Log::<Arc<Operation>>::new(size);
        let o1 = [Arc::new(Operation::Read)];
        let o2 = [Arc::new(Operation::Read)];
        assert_eq!(Arc::strong_count(&o1[0]), 1);
        assert_eq!(Arc::strong_count(&o2[0]), 1);

        for i in 1..(total_entries + 1) {
            l.append(&o1[..], 1, |_o: Arc<Operation>, _i: usize| {});
            assert_eq!(Arc::strong_count(&o1[0]), i + 1);
        }
        assert_eq!(Arc::strong_count(&o1[0]), total_entries + 1);

        for i in 1..(total_entries + 1) {
            l.append(&o2[..], 1, |_o: Arc<Operation>, _i: usize| {});
            assert_eq!(Arc::strong_count(&o1[0]), (total_entries + 1) - i);
            assert_eq!(Arc::strong_count(&o2[0]), i + 1);
        }
        assert_eq!(Arc::strong_count(&o1[0]), 1);
        assert_eq!(Arc::strong_count(&o2[0]), total_entries + 1);
    }

    // Tests that is_replica_synced_for_read() works correctly; it returns
    // false when a replica is not synced up and true when it is.
    #[test]
    fn test_replica_synced_for_read() {
        let l = Log::<Operation>::default();
        let one = l.register().unwrap();
        let two = l.register().unwrap();

        assert_eq!(one, 1);
        assert_eq!(two, 2);

        let o = [Operation::Read];
        let mut f = |op: Operation, i: usize| {
            assert_eq!(op, Operation::Read);
            assert_eq!(i, 1);
        };

        l.append(&o, one, |_o: Operation, _i: usize| {});
        l.exec(one, &mut f);
        assert_eq!(l.is_replica_synced_for_reads(one, l.get_ctail()), true);
        assert_eq!(l.is_replica_synced_for_reads(two, l.get_ctail()), false);

        l.exec(two, &mut f);
        assert_eq!(l.is_replica_synced_for_reads(two, l.get_ctail()), true);
    }
}