1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
use std::convert::Infallible;

use super::Model;

use crate::residuals;

/// Blanket implementation to easily adapt user function to the [Model](super::Model)  trait required by the solver to work with finite-differences
///
/// The right side of the equation is a constant and by default zero.
/// No other outputs are computed
///
/// # Examples
/// ```
/// pub fn square(x: &nalgebra::DVector::<f64>) -> nalgebra::DVector::<f64> {
///     x*x
/// }
///
/// use newton_rootfinder as nrf;
/// use nrf::model::Model; // trait import required
///
/// let iteratives = nalgebra::DVector::from_vec(vec!(2.0));
/// let mut user_model = nrf::model::UserModelFromFunction::new(1, square);
/// user_model.set_iteratives(&iteratives);
/// user_model.evaluate();
///
/// assert_eq!(user_model.len_problem(), 1);
/// assert_eq!(user_model.get_iteratives(), nalgebra::DVector::from_vec(vec!(2.0)));
/// assert_eq!(user_model.jacobian_provided(), false);
/// assert_eq!(user_model.get_residuals().get_values(0), (4.0, 0.0));
/// ```
pub struct UserModelFromFunction {
    pub inputs: nalgebra::DVector<f64>,
    pub func: fn(&nalgebra::DVector<f64>) -> nalgebra::DVector<f64>,
    pub left: nalgebra::DVector<f64>,
    pub right: nalgebra::DVector<f64>,
    problem_size: usize,
}

impl UserModelFromFunction {
    pub fn new(
        problem_size: usize,
        func: fn(&nalgebra::DVector<f64>) -> nalgebra::DVector<f64>,
    ) -> Self {
        let inputs = nalgebra::DVector::zeros(problem_size);
        let left = nalgebra::DVector::from_vec(vec![f64::NAN; problem_size]);
        let right = nalgebra::DVector::zeros(problem_size);

        UserModelFromFunction {
            inputs,
            func,
            left,
            right,
            problem_size,
        }
    }
}

impl Model<nalgebra::Dynamic> for UserModelFromFunction {
    type InaccurateValuesError = Infallible;
    type UnusableValuesError = Infallible;

    fn evaluate(&mut self) -> Result<(), super::ModelError<Self, nalgebra::Dynamic>> {
        self.left = (self.func)(&self.inputs);
        Ok(())
    }

    fn get_residuals(&self) -> residuals::ResidualsValues<nalgebra::Dynamic> {
        residuals::ResidualsValues::new(self.left.clone(), self.right.clone())
    }

    fn get_iteratives(&self) -> nalgebra::DVector<f64> {
        self.inputs.clone()
    }

    fn set_iteratives(&mut self, iteratives: &nalgebra::DVector<f64>) {
        self.inputs = iteratives.clone();
    }

    fn len_problem(&self) -> usize {
        self.problem_size
    }
}

/// Blanket implementation to easily adapt user functions to the [Model](super::Model)  trait required by the solver to work with a jacobian provided
///
/// The right side of the equation is a constant and by default zero.
/// No other outputs are computed
///
/// # Examples
/// ```
/// pub fn square(x: &nalgebra::DVector::<f64>) -> nalgebra::DVector::<f64> {
///     x*x
/// }
/// pub fn dsquare(x: &nalgebra::DVector::<f64>) -> nalgebra::DMatrix::<f64> {
///     let mut jac = nalgebra::DMatrix::zeros(1,1);
///     jac[(0,0)] = 2.0*x[0];
///     jac
/// }
///
/// use newton_rootfinder as nrf;
/// use nrf::model::Model; // trait import required
///
/// let iteratives = nalgebra::DVector::from_vec(vec!(2.0));
/// let mut user_model = nrf::model::UserModelFromFunctionAndJacobian::new(1, square, dsquare);
/// user_model.set_iteratives(&iteratives);
/// user_model.evaluate();
///
/// assert_eq!(user_model.len_problem(), 1);
/// assert_eq!(user_model.get_iteratives(), nalgebra::DVector::from_vec(vec!(2.0)));
/// assert_eq!(user_model.get_residuals().get_values(0), (4.0, 0.0));
///
/// assert_eq!(user_model.jacobian_provided(), true);
/// let jacobians_values = user_model.get_jacobian().unwrap();
/// let (jac_left, jac_right) = jacobians_values.get_jacobians();
/// assert_eq!(jac_left[(0,0)], 4.0);
/// assert_eq!(jac_right[(0,0)], 0.0);
/// ```
pub struct UserModelFromFunctionAndJacobian {
    pub inputs: nalgebra::DVector<f64>,
    pub func: fn(&nalgebra::DVector<f64>) -> nalgebra::DVector<f64>,
    pub jac: fn(&nalgebra::DVector<f64>) -> nalgebra::DMatrix<f64>,
    pub left: nalgebra::DVector<f64>,
    pub right: nalgebra::DVector<f64>,
    problem_size: usize,
}

impl UserModelFromFunctionAndJacobian {
    pub fn new(
        problem_size: usize,
        func: fn(&nalgebra::DVector<f64>) -> nalgebra::DVector<f64>,
        jac: fn(&nalgebra::DVector<f64>) -> nalgebra::DMatrix<f64>,
    ) -> Self {
        let inputs = nalgebra::DVector::zeros(problem_size);
        let left = nalgebra::DVector::from_vec(vec![f64::NAN; problem_size]);
        let right = nalgebra::DVector::zeros(problem_size);

        UserModelFromFunctionAndJacobian {
            inputs,
            func,
            jac,
            left,
            right,
            problem_size,
        }
    }
}

impl Model<nalgebra::Dynamic> for UserModelFromFunctionAndJacobian {
    type InaccurateValuesError = Infallible;
    type UnusableValuesError = Infallible;

    fn evaluate(&mut self) -> Result<(), super::ModelError<Self, nalgebra::Dynamic>> {
        self.left = (self.func)(&self.inputs);
        Ok(())
    }

    fn get_residuals(&self) -> residuals::ResidualsValues<nalgebra::Dynamic> {
        residuals::ResidualsValues::new(self.left.clone(), self.right.clone())
    }

    fn get_iteratives(&self) -> nalgebra::DVector<f64> {
        self.inputs.clone()
    }

    fn set_iteratives(&mut self, iteratives: &nalgebra::DVector<f64>) {
        self.inputs = iteratives.clone();
    }

    fn len_problem(&self) -> usize {
        self.problem_size
    }

    fn jacobian_provided(&self) -> bool {
        true
    }
    fn get_jacobian(
        &mut self,
    ) -> Result<
        residuals::JacobianValues<nalgebra::Dynamic>,
        super::ModelError<Self, nalgebra::Dynamic>,
    > {
        let jac_left = (self.jac)(&self.inputs);
        let jac_right = nalgebra::DMatrix::zeros(self.len_problem(), self.len_problem());
        Ok(residuals::JacobianValues::new(jac_left, jac_right))
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    pub fn square(x: &nalgebra::DVector<f64>) -> nalgebra::DVector<f64> {
        x * x
    }

    pub fn dsquare(x: &nalgebra::DVector<f64>) -> nalgebra::DMatrix<f64> {
        let mut y = nalgebra::DMatrix::zeros(1, 1);
        y[(0, 0)] = 2.0 * x[0];
        y
    }

    #[test]
    fn create_user_model() {
        let iteratives = nalgebra::DVector::from_vec(vec![2.0]);
        let mut user_model = UserModelFromFunction::new(1, square);
        user_model.set_iteratives(&iteratives);
        user_model.evaluate().unwrap();

        assert_eq!(user_model.len_problem(), 1);
        assert_eq!(
            user_model.get_iteratives(),
            nalgebra::DVector::from_vec(vec!(2.0))
        );
        assert_eq!(user_model.jacobian_provided(), false);
        assert_eq!(user_model.get_residuals().get_values(0), (4.0, 0.0));
    }
    #[test]
    fn create_user_model_with_jacobian() {
        let iteratives = nalgebra::DVector::from_vec(vec![2.0]);
        let mut user_model = UserModelFromFunctionAndJacobian::new(1, square, dsquare);
        user_model.set_iteratives(&iteratives);
        user_model.evaluate().unwrap();

        assert_eq!(user_model.len_problem(), 1);
        assert_eq!(
            user_model.get_iteratives(),
            nalgebra::DVector::from_vec(vec!(2.0))
        );
        assert_eq!(user_model.jacobian_provided(), true);
        assert_eq!(user_model.get_residuals().get_values(0), (4.0, 0.0));
    }
}