[][src]Struct net_ensembles::sw::SwEnsemble

pub struct SwEnsemble<T: Node, R: Rng> { /* fields omitted */ }

Implements small-world graph ensemble

Sampling

Simple sampling and/or monte carlo steps?

Access or manipulate RNG?

Minimal example

use net_ensembles::{SwEnsemble, EmptyNode};
use net_ensembles::traits::*; // I recommend always using this
use rand_pcg::Pcg64; //or whatever you want to use as rng
use rand::SeedableRng; // I use this to seed my rng, but you can use whatever

let rng = Pcg64::seed_from_u64(12);

// now create small-world ensemble with 200 nodes
// and a rewiring probability of 0.3 for each edge
let sw_ensemble = SwEnsemble::<EmptyNode, Pcg64>::new(200, 0.3, rng);

Simple sampling example

use net_ensembles::{SwEnsemble, EmptyNode};
use net_ensembles::traits::*; // I recommend always using this
use rand_pcg::Pcg64; //or whatever you want to use as rng
use rand::SeedableRng; // I use this to seed my rng, but you can use whatever
use std::fs::File;
use std::io::{BufWriter, Write};

let rng = Pcg64::seed_from_u64(122);

// now create small-world ensemble with 100 nodes
// and a rewiring probability of 0.3 for each edge
let mut sw_ensemble = SwEnsemble::<EmptyNode, Pcg64>::new(100, 0.3, rng);

// setup file for writing
let f = File::create("simple_sample_sw_example.dat")
    .expect("Unable to create file");
let mut f = BufWriter::new(f);
f.write_all(b"#diameter bi_connect_max average_degree\n")
    .unwrap();

// simple sample for 10 steps
sw_ensemble.simple_sample(10,
    |ensemble|
    {
        let diameter = ensemble.graph()
            .diameter()
            .unwrap();

        let bi_connect_max = ensemble.graph()
            .clone()
            .vertex_biconnected_components(false)[0];

        let average_degree = ensemble.graph()
            .average_degree();

        write!(f, "{} {} {}\n", diameter, bi_connect_max, average_degree)
            .unwrap();
    }
);

// or just collect this into a vector to print or do whatever
let vec = sw_ensemble.simple_sample_vec(10,
    |ensemble|
    {
        let diameter = ensemble.graph()
            .diameter()
            .unwrap();

        let transitivity = ensemble.graph()
            .transitivity();
        (diameter, transitivity)
    }
);
println!("{:?}", vec);

Methods

impl<T, R> SwEnsemble<T, R> where
    T: Node,
    R: Rng
[src]

pub fn new(n: u32, r_prob: f64, rng: R) -> Self[src]

Initialize

  • create new SwEnsemble graph with n vertices
  • r_prob is probability of rewiring for each edge
  • rng is consumed and used as random number generator in the following
  • internally uses SwGraph<T>::new(n)

pub fn draw_edge(&mut self) -> (u32, u32)[src]

  • draws random edge (i0, i1)
  • edge rooted at i0
  • uniform probability
  • result dependent on order of adjecency lists
  • mut because it uses the rng

pub fn sort_adj(&mut self)[src]

Sort adjecency lists

If you depend on the order of the adjecency lists, you can sort them

Performance

  • internally uses pattern-defeating quicksort as long as that is the standard
  • sorts an adjecency list with length d in worst-case: O(d log(d))
  • is called for each adjecency list, i.e., self.vertex_count() times

pub fn graph(&self) -> &SwGraph<T>[src]

  • returns reference to the underlying topology aka, the SwGraph<T>
  • use this to call functions regarding the topology

pub fn at(&self, index: usize) -> &T[src]

  • access additional information at

pub fn at_mut(&mut self, index: usize) -> &mut T[src]

  • mutable access of additional information at index

pub fn r_prob(&self) -> f64[src]

  • returns rewiring probability

pub fn set_r_prob(&mut self, r_prob: f64)[src]

  • set new value for rewiring probability

Note

  • will only set the value, which will be used from now on
  • if you also want to create a new sample, call randomize afterwards

Trait Implementations

impl<T: Clone + Node, R: Clone + Rng> Clone for SwEnsemble<T, R>[src]

impl<T: Debug + Node, R: Debug + Rng> Debug for SwEnsemble<T, R>[src]

Auto Trait Implementations

impl<T, R> RefUnwindSafe for SwEnsemble<T, R> where
    R: RefUnwindSafe,
    T: RefUnwindSafe

impl<T, R> Send for SwEnsemble<T, R> where
    R: Send,
    T: Send

impl<T, R> Sync for SwEnsemble<T, R> where
    R: Sync,
    T: Sync

impl<T, R> Unpin for SwEnsemble<T, R> where
    R: Unpin,
    T: Unpin

impl<T, R> UnwindSafe for SwEnsemble<T, R> where
    R: UnwindSafe,
    T: UnwindSafe

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>,