Trait ndless::math::Float

source ·
pub trait Float: Sized {
Show 39 methods // Required methods fn floor(self) -> Self; fn ceil(self) -> Self; fn round(self) -> Self; fn trunc(self) -> Self; fn fract(self) -> Self; fn abs(self) -> Self; fn signum(self) -> Self; fn copysign(self, y: Self) -> Self; fn mul_add(self, a: Self, b: Self) -> Self; fn div_euc(self, rhs: Self) -> Self; fn mod_euc(self, rhs: Self) -> Self; fn powi(self, n: i32) -> Self; fn powf(self, n: Self) -> Self; fn sqrt(self) -> Self; fn exp(self) -> Self; fn exp2(self) -> Self; fn ln(self) -> Self; fn log(self, base: Self) -> Self; fn log2(self) -> Self; fn log10(self) -> Self; fn abs_sub(self, other: Self) -> Self; fn cbrt(self) -> Self; fn hypot(self, other: Self) -> Self; fn sin(self) -> Self; fn cos(self) -> Self; fn tan(self) -> Self; fn asin(self) -> Self; fn acos(self) -> Self; fn atan(self) -> Self; fn atan2(self, other: Self) -> Self; fn sin_cos(self) -> (Self, Self) where Self: Sized; fn exp_m1(self) -> Self; fn ln_1p(self) -> Self; fn sinh(self) -> Self; fn cosh(self) -> Self; fn tanh(self) -> Self; fn asinh(self) -> Self; fn acosh(self) -> Self; fn atanh(self) -> Self;
}
Expand description

Copy and pasted from Rust std

Required Methods§

source

fn floor(self) -> Self

Returns the largest integer less than or equal to a number.

§Examples
let f = 3.99_f64;
let g = 3.0_f64;

assert_eq!(f.floor(), 3.0);
assert_eq!(g.floor(), 3.0);
source

fn ceil(self) -> Self

Returns the smallest integer greater than or equal to a number.

§Examples
let f = 3.01_f64;
let g = 4.0_f64;

assert_eq!(f.ceil(), 4.0);
assert_eq!(g.ceil(), 4.0);
source

fn round(self) -> Self

Returns the nearest integer to a number. Round half-way cases away from 0.0.

§Examples
let f = 3.3_f64;
let g = -3.3_f64;

assert_eq!(f.round(), 3.0);
assert_eq!(g.round(), -3.0);
source

fn trunc(self) -> Self

Returns the integer part of a number.

§Examples
let f = 3.3_f64;
let g = -3.7_f64;

assert_eq!(f.trunc(), 3.0);
assert_eq!(g.trunc(), -3.0);
source

fn fract(self) -> Self

Returns the fractional part of a number.

§Examples
let x = 3.5_f64;
let y = -3.5_f64;
let abs_difference_x = (x.fract() - 0.5).abs();
let abs_difference_y = (y.fract() - (-0.5)).abs();

assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);
source

fn abs(self) -> Self

Computes the absolute value of self. Returns NAN if the number is NAN.

§Examples
use std::f64;

let x = 3.5_f64;
let y = -3.5_f64;

let abs_difference_x = (x.abs() - x).abs();
let abs_difference_y = (y.abs() - (-y)).abs();

assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);

assert!(f64::NAN.abs().is_nan());
source

fn signum(self) -> Self

Returns a number that represents the sign of self.

  • 1.0 if the number is positive, +0.0 or INFINITY
  • -1.0 if the number is negative, -0.0 or NEG_INFINITY
  • NAN if the number is NAN
§Examples
use std::f64;

let f = 3.5_f64;

assert_eq!(f.signum(), 1.0);
assert_eq!(f64::NEG_INFINITY.signum(), -1.0);

assert!(f64::NAN.signum().is_nan());
source

fn copysign(self, y: Self) -> Self

Returns a number composed of the magnitude of self and the sign of y.

Equal to self if the sign of self and y are the same, otherwise equal to -self. If self is a NAN, then a NAN with the sign of y is returned.

§Examples
#![feature(copysign)]
use std::f64;

let f = 3.5_f64;

assert_eq!(f.copysign(0.42), 3.5_f64);
assert_eq!(f.copysign(-0.42), -3.5_f64);
assert_eq!((-f).copysign(0.42), 3.5_f64);
assert_eq!((-f).copysign(-0.42), -3.5_f64);

assert!(f64::NAN.copysign(1.0).is_nan());
source

fn mul_add(self, a: Self, b: Self) -> Self

Fused multiply-add. Computes (self * a) + b with only one rounding error, yielding a more accurate result than an unfused multiply-add.

Using mul_add can be more performant than an unfused multiply-add if the target architecture has a dedicated fma CPU instruction.

§Examples
let m = 10.0_f64;
let x = 4.0_f64;
let b = 60.0_f64;

// 100.0
let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();

assert!(abs_difference < 1e-10);
source

fn div_euc(self, rhs: Self) -> Self

Calculates Euclidean division, the matching method for mod_euc.

This computes the integer n such that self = n * rhs + self.mod_euc(rhs). In other words, the result is self / rhs rounded to the integer n such that self >= n * rhs.

§Examples
#![feature(euclidean_division)]
let a: f64 = 7.0;
let b = 4.0;
assert_eq!(a.div_euc(b), 1.0); // 7.0 > 4.0 * 1.0
assert_eq!((-a).div_euc(b), -2.0); // -7.0 >= 4.0 * -2.0
assert_eq!(a.div_euc(-b), -1.0); // 7.0 >= -4.0 * -1.0
assert_eq!((-a).div_euc(-b), 2.0); // -7.0 >= -4.0 * 2.0
source

fn mod_euc(self, rhs: Self) -> Self

Calculates the Euclidean modulo (self mod rhs), which is never negative.

In particular, the return value r satisfies 0.0 <= r < rhs.abs() in most cases. However, due to a floating point round-off error it can result in r == rhs.abs(), violating the mathematical definition, if self is much smaller than rhs.abs() in magnitude and self < 0.0. This result is not an element of the function’s codomain, but it is the closest floating point number in the real numbers and thus fulfills the property self == self.div_euc(rhs) * rhs + self.mod_euc(rhs) approximatively.

§Examples
#![feature(euclidean_division)]
let a: f64 = 7.0;
let b = 4.0;
assert_eq!(a.mod_euc(b), 3.0);
assert_eq!((-a).mod_euc(b), 1.0);
assert_eq!(a.mod_euc(-b), 3.0);
assert_eq!((-a).mod_euc(-b), 1.0);
// limitation due to round-off error
assert_ne!((-std::f64::EPSILON).mod_euc(3.0), 0.0);
source

fn powi(self, n: i32) -> Self

Raises a number to an integer power.

Using this function is generally faster than using powf

§Examples
let x = 2.0_f64;
let abs_difference = (x.powi(2) - x*x).abs();

assert!(abs_difference < 1e-10);
source

fn powf(self, n: Self) -> Self

Raises a number to a floating point power.

§Examples
let x = 2.0_f64;
let abs_difference = (x.powf(2.0) - x*x).abs();

assert!(abs_difference < 1e-10);
source

fn sqrt(self) -> Self

Takes the square root of a number.

Returns NaN if self is a negative number.

§Examples
let positive = 4.0_f64;
let negative = -4.0_f64;

let abs_difference = (positive.sqrt() - 2.0).abs();

assert!(abs_difference < 1e-10);
assert!(negative.sqrt().is_nan());
source

fn exp(self) -> Self

Returns e^(self), (the exponential function).

§Examples
let one = 1.0_f64;
// e^1
let e = one.exp();

// ln(e) - 1 == 0
let abs_difference = (e.ln() - 1.0).abs();

assert!(abs_difference < 1e-10);
source

fn exp2(self) -> Self

Returns 2^(self).

§Examples
let f = 2.0_f64;

// 2^2 - 4 == 0
let abs_difference = (f.exp2() - 4.0).abs();

assert!(abs_difference < 1e-10);
source

fn ln(self) -> Self

Returns the natural logarithm of the number.

§Examples
let one = 1.0_f64;
// e^1
let e = one.exp();

// ln(e) - 1 == 0
let abs_difference = (e.ln() - 1.0).abs();

assert!(abs_difference < 1e-10);
source

fn log(self, base: Self) -> Self

Returns the logarithm of the number with respect to an arbitrary base.

The result may not be correctly rounded owing to implementation details; self.log2() can produce more accurate results for base 2, and self.log10() can produce more accurate results for base 10.

§Examples
let five = 5.0_f64;

// log5(5) - 1 == 0
let abs_difference = (five.log(5.0) - 1.0).abs();

assert!(abs_difference < 1e-10);
source

fn log2(self) -> Self

Returns the base 2 logarithm of the number.

§Examples
let two = 2.0_f64;

// log2(2) - 1 == 0
let abs_difference = (two.log2() - 1.0).abs();

assert!(abs_difference < 1e-10);
source

fn log10(self) -> Self

Returns the base 10 logarithm of the number.

§Examples
let ten = 10.0_f64;

// log10(10) - 1 == 0
let abs_difference = (ten.log10() - 1.0).abs();

assert!(abs_difference < 1e-10);
source

fn abs_sub(self, other: Self) -> Self

👎Deprecated: you probably meant (self - other).abs(): this operation is (self - other).max(0.0) (also known as fdim in C). If you truly need the positive difference, consider using that expression or the C function fdim, depending on how you wish to handle NaN (please consider filing an issue describing your use-case too).

The positive difference of two numbers.

  • If self <= other: 0:0
  • Else: self - other
§Examples
let x = 3.0_f64;
let y = -3.0_f64;

let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();

assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);
source

fn cbrt(self) -> Self

Takes the cubic root of a number.

§Examples
let x = 8.0_f64;

// x^(1/3) - 2 == 0
let abs_difference = (x.cbrt() - 2.0).abs();

assert!(abs_difference < 1e-10);
source

fn hypot(self, other: Self) -> Self

Calculates the length of the hypotenuse of a right-angle triangle given legs of length x and y.

§Examples
let x = 2.0_f64;
let y = 3.0_f64;

// sqrt(x^2 + y^2)
let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();

assert!(abs_difference < 1e-10);
source

fn sin(self) -> Self

Computes the sine of a number (in radians).

§Examples
use std::f64;

let x = f64::consts::PI/2.0;

let abs_difference = (x.sin() - 1.0).abs();

assert!(abs_difference < 1e-10);
source

fn cos(self) -> Self

Computes the cosine of a number (in radians).

§Examples
use std::f64;

let x = 2.0*f64::consts::PI;

let abs_difference = (x.cos() - 1.0).abs();

assert!(abs_difference < 1e-10);
source

fn tan(self) -> Self

Computes the tangent of a number (in radians).

§Examples
use std::f64;

let x = f64::consts::PI/4.0;
let abs_difference = (x.tan() - 1.0).abs();

assert!(abs_difference < 1e-14);
source

fn asin(self) -> Self

Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].

§Examples
use std::f64;

let f = f64::consts::PI / 2.0;

// asin(sin(pi/2))
let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();

assert!(abs_difference < 1e-10);
source

fn acos(self) -> Self

Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].

§Examples
use std::f64;

let f = f64::consts::PI / 4.0;

// acos(cos(pi/4))
let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();

assert!(abs_difference < 1e-10);
source

fn atan(self) -> Self

Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];

§Examples
let f = 1.0_f64;

// atan(tan(1))
let abs_difference = (f.tan().atan() - 1.0).abs();

assert!(abs_difference < 1e-10);
source

fn atan2(self, other: Self) -> Self

Computes the four quadrant arctangent of self (y) and other (x) in radians.

  • x = 0, y = 0: 0
  • x >= 0: arctan(y/x) -> [-pi/2, pi/2]
  • y >= 0: arctan(y/x) + pi -> (pi/2, pi]
  • y < 0: arctan(y/x) - pi -> (-pi, -pi/2)
§Examples
use std::f64;

let pi = f64::consts::PI;
// Positive angles measured counter-clockwise
// from positive x axis
// -pi/4 radians (45 deg clockwise)
let x1 = 3.0_f64;
let y1 = -3.0_f64;

// 3pi/4 radians (135 deg counter-clockwise)
let x2 = -3.0_f64;
let y2 = 3.0_f64;

let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();

assert!(abs_difference_1 < 1e-10);
assert!(abs_difference_2 < 1e-10);
source

fn sin_cos(self) -> (Self, Self)
where Self: Sized,

Simultaneously computes the sine and cosine of the number, x. Returns (sin(x), cos(x)).

§Examples
use std::f64;

let x = f64::consts::PI/4.0;
let f = x.sin_cos();

let abs_difference_0 = (f.0 - x.sin()).abs();
let abs_difference_1 = (f.1 - x.cos()).abs();

assert!(abs_difference_0 < 1e-10);
assert!(abs_difference_1 < 1e-10);
source

fn exp_m1(self) -> Self

Returns e^(self) - 1 in a way that is accurate even if the number is close to zero.

§Examples
let x = 7.0_f64;

// e^(ln(7)) - 1
let abs_difference = (x.ln().exp_m1() - 6.0).abs();

assert!(abs_difference < 1e-10);
source

fn ln_1p(self) -> Self

Returns ln(1+n) (natural logarithm) more accurately than if the operations were performed separately.

§Examples
use std::f64;

let x = f64::consts::E - 1.0;

// ln(1 + (e - 1)) == ln(e) == 1
let abs_difference = (x.ln_1p() - 1.0).abs();

assert!(abs_difference < 1e-10);
source

fn sinh(self) -> Self

Hyperbolic sine function.

§Examples
use std::f64;

let e = f64::consts::E;
let x = 1.0_f64;

let f = x.sinh();
// Solving sinh() at 1 gives `(e^2-1)/(2e)`
let g = (e*e - 1.0)/(2.0*e);
let abs_difference = (f - g).abs();

assert!(abs_difference < 1e-10);
source

fn cosh(self) -> Self

Hyperbolic cosine function.

§Examples
use std::f64;

let e = f64::consts::E;
let x = 1.0_f64;
let f = x.cosh();
// Solving cosh() at 1 gives this result
let g = (e*e + 1.0)/(2.0*e);
let abs_difference = (f - g).abs();

// Same result
assert!(abs_difference < 1.0e-10);
source

fn tanh(self) -> Self

Hyperbolic tangent function.

§Examples
use std::f64;

let e = f64::consts::E;
let x = 1.0_f64;

let f = x.tanh();
// Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
let abs_difference = (f - g).abs();

assert!(abs_difference < 1.0e-10);
source

fn asinh(self) -> Self

Inverse hyperbolic sine function.

§Examples
let x = 1.0_f64;
let f = x.sinh().asinh();

let abs_difference = (f - x).abs();

assert!(abs_difference < 1.0e-10);
source

fn acosh(self) -> Self

Inverse hyperbolic cosine function.

§Examples
let x = 1.0_f64;
let f = x.cosh().acosh();

let abs_difference = (f - x).abs();

assert!(abs_difference < 1.0e-10);
source

fn atanh(self) -> Self

Inverse hyperbolic tangent function.

§Examples
use std::f64;

let e = f64::consts::E;
let f = e.tanh().atanh();

let abs_difference = (f - e).abs();

assert!(abs_difference < 1.0e-10);

Object Safety§

This trait is not object safe.

Implementations on Foreign Types§

source§

impl Float for f32

source§

fn floor(self) -> f32

source§

fn ceil(self) -> f32

source§

fn round(self) -> f32

source§

fn trunc(self) -> f32

source§

fn fract(self) -> f32

source§

fn abs(self) -> f32

source§

fn signum(self) -> f32

source§

fn copysign(self, y: f32) -> f32

source§

fn mul_add(self, a: f32, b: f32) -> f32

source§

fn div_euc(self, rhs: f32) -> f32

source§

fn mod_euc(self, rhs: f32) -> f32

source§

fn powi(self, n: i32) -> f32

source§

fn powf(self, n: f32) -> f32

source§

fn sqrt(self) -> f32

source§

fn exp(self) -> f32

source§

fn exp2(self) -> f32

source§

fn ln(self) -> f32

source§

fn log(self, base: f32) -> f32

source§

fn log2(self) -> f32

source§

fn log10(self) -> f32

source§

fn abs_sub(self, other: f32) -> f32

👎Deprecated: you probably meant (self - other).abs(): this operation is (self - other).max(0.0) (also known as fdim in C). If you truly need the positive difference, consider using that expression or the C function fdim, depending on how you wish to handle NaN (please consider filing an issue describing your use-case too).
source§

fn cbrt(self) -> f32

source§

fn hypot(self, other: f32) -> f32

source§

fn sin(self) -> f32

source§

fn cos(self) -> f32

source§

fn tan(self) -> f32

source§

fn asin(self) -> f32

source§

fn acos(self) -> f32

source§

fn atan(self) -> f32

source§

fn atan2(self, other: f32) -> f32

source§

fn sin_cos(self) -> (f32, f32)

source§

fn exp_m1(self) -> f32

source§

fn ln_1p(self) -> f32

source§

fn sinh(self) -> f32

source§

fn cosh(self) -> f32

source§

fn tanh(self) -> f32

source§

fn asinh(self) -> f32

source§

fn acosh(self) -> f32

source§

fn atanh(self) -> f32

source§

impl Float for f64

source§

fn floor(self) -> f64

source§

fn ceil(self) -> f64

source§

fn round(self) -> f64

source§

fn trunc(self) -> f64

source§

fn fract(self) -> f64

source§

fn abs(self) -> f64

source§

fn signum(self) -> f64

source§

fn copysign(self, y: f64) -> f64

source§

fn mul_add(self, a: f64, b: f64) -> f64

source§

fn div_euc(self, rhs: f64) -> f64

source§

fn mod_euc(self, rhs: f64) -> f64

source§

fn powi(self, n: i32) -> f64

source§

fn powf(self, n: f64) -> f64

source§

fn sqrt(self) -> f64

source§

fn exp(self) -> f64

source§

fn exp2(self) -> f64

source§

fn ln(self) -> f64

source§

fn log(self, base: f64) -> f64

source§

fn log2(self) -> f64

source§

fn log10(self) -> f64

source§

fn abs_sub(self, other: f64) -> f64

👎Deprecated: you probably meant (self - other).abs(): this operation is (self - other).max(0.0) (also known as fdim in C). If you truly need the positive difference, consider using that expression or the C function fdim, depending on how you wish to handle NaN (please consider filing an issue describing your use-case too).
source§

fn cbrt(self) -> f64

source§

fn hypot(self, other: f64) -> f64

source§

fn sin(self) -> f64

source§

fn cos(self) -> f64

source§

fn tan(self) -> f64

source§

fn asin(self) -> f64

source§

fn acos(self) -> f64

source§

fn atan(self) -> f64

source§

fn atan2(self, other: f64) -> f64

source§

fn sin_cos(self) -> (f64, f64)

source§

fn exp_m1(self) -> f64

source§

fn ln_1p(self) -> f64

source§

fn sinh(self) -> f64

source§

fn cosh(self) -> f64

source§

fn tanh(self) -> f64

source§

fn asinh(self) -> f64

source§

fn acosh(self) -> f64

source§

fn atanh(self) -> f64

Implementors§