1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
//! Low level operations on vectors and matrices.

use num::{Float, Signed};
use std::ops::Mul;
use std::cmp::Ordering;
use traits::structure::SquareMat;

/// Result of a partial ordering.
#[derive(Eq, PartialEq, RustcEncodable, RustcDecodable, Clone, Debug, Copy)]
pub enum POrdering {
    /// Result of a strict comparison.
    PartialLess,
    /// Equality relationship.
    PartialEqual,
    /// Result of a strict comparison.
    PartialGreater,
    /// Result of a comparison between two objects that are not comparable.
    NotComparable
}

impl POrdering {
    /// Returns `true` if `self` is equal to `Equal`.
    pub fn is_eq(&self) -> bool {
        *self == POrdering::PartialEqual
    }

    /// Returns `true` if `self` is equal to `Less`.
    pub fn is_lt(&self) -> bool {
        *self == POrdering::PartialLess
    }

    /// Returns `true` if `self` is equal to `Less` or `Equal`.
    pub fn is_le(&self) -> bool {
        *self == POrdering::PartialLess || *self == POrdering::PartialEqual
    }

    /// Returns `true` if `self` is equal to `Greater`.
    pub fn is_gt(&self) -> bool {
        *self == POrdering::PartialGreater
    }

    /// Returns `true` if `self` is equal to `Greater` or `Equal`.
    pub fn is_ge(&self) -> bool {
        *self == POrdering::PartialGreater || *self == POrdering::PartialEqual
    }

    /// Returns `true` if `self` is equal to `NotComparable`.
    pub fn is_not_comparable(&self) -> bool {
        *self == POrdering::NotComparable
    }

    /// Creates a `POrdering` from an `Ordering`.
    pub fn from_ordering(ord: Ordering) -> POrdering {
        match ord {
            Ordering::Less    => POrdering::PartialLess,
            Ordering::Equal   => POrdering::PartialEqual,
            Ordering::Greater => POrdering::PartialGreater
        }
    }

    /// Converts this `POrdering` to an `Ordering`.
    ///
    /// Returns `None` if `self` is `NotComparable`.
    pub fn to_ordering(self) -> Option<Ordering> {
        match self {
            POrdering::PartialLess    => Some(Ordering::Less),
            POrdering::PartialEqual   => Some(Ordering::Equal),
            POrdering::PartialGreater => Some(Ordering::Greater),
            POrdering::NotComparable  => None
        }
    }
}

/// Pointwise ordering operations.
pub trait POrd {
    /// Returns the infimum of this value and another
    fn inf(&self, other: &Self) -> Self;

    /// Returns the supremum of this value and another
    fn sup(&self, other: &Self) -> Self;

    /// Compare `self` and `other` using a partial ordering relation.
    fn partial_cmp(&self, other: &Self) -> POrdering;

    /// Returns `true` iff `self` and `other` are comparable and `self <= other`.
    #[inline]
    fn partial_le(&self, other: &Self) -> bool {
        POrd::partial_cmp(self, other).is_le()
    }

    /// Returns `true` iff `self` and `other` are comparable and `self < other`.
    #[inline]
    fn partial_lt(&self, other: &Self) -> bool {
        POrd::partial_cmp(self, other).is_lt()
    }

    /// Returns `true` iff `self` and `other` are comparable and `self >= other`.
    #[inline]
    fn partial_ge(&self, other: &Self) -> bool {
        POrd::partial_cmp(self, other).is_ge()
    }

    /// Returns `true` iff `self` and `other` are comparable and `self > other`.
    #[inline]
    fn partial_gt(&self, other: &Self) -> bool {
        POrd::partial_cmp(self, other).is_gt()
    }

    /// Return the minimum of `self` and `other` if they are comparable.
    #[inline]
    fn partial_min<'a>(&'a self, other: &'a Self) -> Option<&'a Self> {
        match POrd::partial_cmp(self, other) {
            POrdering::PartialLess | POrdering::PartialEqual => Some(self),
            POrdering::PartialGreater             => Some(other),
            POrdering::NotComparable              => None
        }
    }

    /// Return the maximum of `self` and `other` if they are comparable.
    #[inline]
    fn partial_max<'a>(&'a self, other: &'a Self) -> Option<&'a Self> {
        match POrd::partial_cmp(self, other) {
            POrdering::PartialGreater | POrdering::PartialEqual => Some(self),
            POrdering::PartialLess   => Some(other),
            POrdering::NotComparable => None
        }
    }

    /// Clamp `value` between `min` and `max`. Returns `None` if `value` is not comparable to
    /// `min` or `max`.
    #[inline]
    fn partial_clamp<'a>(&'a self, min: &'a Self, max: &'a Self) -> Option<&'a Self> {
        let v_min = self.partial_cmp(min);
        let v_max = self.partial_cmp(max);

        if v_min.is_not_comparable() || v_max.is_not_comparable() {
            None
        }
        else {
            if v_min.is_lt() {
                Some(min)
            }
            else if v_max.is_gt() {
                Some(max)
            }
            else {
                Some(self)
            }
        }
    }
}

/// Trait for testing approximate equality
pub trait ApproxEq<Eps>: Sized {
    /// Default epsilon for approximation.
    fn approx_epsilon(unused_mut: Option<Self>) -> Eps;

    /// Tests approximate equality using a custom epsilon.
    fn approx_eq_eps(&self, other: &Self, epsilon: &Eps) -> bool;

    /// Default ULPs for approximation.
    fn approx_ulps(unused_mut: Option<Self>) -> u32;

    /// Tests approximate equality using units in the last place (ULPs)
    fn approx_eq_ulps(&self, other: &Self, ulps: u32) -> bool;

    /// Tests approximate equality.
    #[inline]
    fn approx_eq(&self, other: &Self) -> bool {
        self.approx_eq_eps(other, &ApproxEq::approx_epsilon(None::<Self>))
    }
}

impl ApproxEq<f32> for f32 {
    #[inline]
    fn approx_epsilon(_: Option<f32>) -> f32 {
        1.0e-6
    }

    #[inline]
    fn approx_eq_eps(&self, other: &f32, epsilon: &f32) -> bool {
        ::abs(&(*self - *other)) < *epsilon
    }

    fn approx_ulps(_: Option<f32>) -> u32 {
        8
    }

    fn approx_eq_ulps(&self, other: &f32, ulps: u32) -> bool {
        // Handle -0 == +0
        if *self == *other { return true; }

        // Otherwise, differing signs should be not-equal, even if within ulps
        if self.signum() != other.signum() { return false; }

        // IEEE754 floats are in the same order as 2s complement isizes
        // so this trick (subtracting the isizes) works.
        let iself: i32 = unsafe { ::std::mem::transmute(*self) };
        let iother: i32 = unsafe { ::std::mem::transmute(*other) };

        (iself - iother).abs() < ulps as i32
    }
}

impl ApproxEq<f64> for f64 {
    #[inline]
    fn approx_epsilon(_: Option<f64>) -> f64 {
        1.0e-6
    }

    #[inline]
    fn approx_eq_eps(&self, other: &f64, approx_epsilon: &f64) -> bool {
        ::abs(&(*self - *other)) < *approx_epsilon
    }

    fn approx_ulps(_: Option<f64>) -> u32 {
        8
    }

    fn approx_eq_ulps(&self, other: &f64, ulps: u32) -> bool {
        // Handle -0 == +0
        if *self == *other { return true; }

        // Otherwise, differing signs should be not-equal, even if within ulps
        if self.signum() != other.signum() { return false; }

        let iself: i64 = unsafe { ::std::mem::transmute(*self) };
        let iother: i64 = unsafe { ::std::mem::transmute(*other) };

        (iself - iother).abs() < ulps as i64
    }
}

impl<'a, N, T: ApproxEq<N>> ApproxEq<N> for &'a T {
    fn approx_epsilon(_: Option<&'a T>) -> N {
        ApproxEq::approx_epsilon(None::<T>)
    }

    fn approx_eq_eps(&self, other: &&'a T, approx_epsilon: &N) -> bool {
        ApproxEq::approx_eq_eps(*self, *other, approx_epsilon)
    }

    fn approx_ulps(_: Option<&'a T>) -> u32 {
        ApproxEq::approx_ulps(None::<T>)
    }

    fn approx_eq_ulps(&self, other: &&'a T, ulps: u32) -> bool {
        ApproxEq::approx_eq_ulps(*self, *other, ulps)
    }
}

impl<'a, N, T: ApproxEq<N>> ApproxEq<N> for &'a mut T {
    fn approx_epsilon(_: Option<&'a mut T>) -> N {
        ApproxEq::approx_epsilon(None::<T>)
    }

    fn approx_eq_eps(&self, other: &&'a mut T, approx_epsilon: &N) -> bool {
        ApproxEq::approx_eq_eps(*self, *other, approx_epsilon)
    }

    fn approx_ulps(_: Option<&'a mut T>) -> u32 {
        ApproxEq::approx_ulps(None::<T>)
    }

    fn approx_eq_ulps(&self, other: &&'a mut T, ulps: u32) -> bool {
        ApproxEq::approx_eq_ulps(*self, *other, ulps)
    }
}

/// Trait of objects having an absolute value.
/// This is useful if the object does not have the same type as its absolute value.
pub trait Absolute<A> {
    /// Computes some absolute value of this object.
    /// Typically, this will make all component of a matrix or vector positive.
    fn abs(&Self) -> A;
}

/// Trait of objects having an inverse. Typically used to implement matrix inverse.
pub trait Inv: Sized {
    /// Returns the inverse of `m`.
    fn inv(&self) -> Option<Self>;

    /// In-place version of `inverse`.
    fn inv_mut(&mut self) -> bool;
}

/// Trait of objects having a determinant. Typically used by square matrices.
pub trait Det<N> {
    /// Returns the determinant of `m`.
    fn det(&self) -> N;
}

/// Trait of objects which can be transposed.
pub trait Transpose {
    /// Computes the transpose of a matrix.
    fn transpose(&self) -> Self;

    /// In-place version of `transposed`.
    fn transpose_mut(&mut self);
}

/// Traits of objects having an outer product.
pub trait Outer {
    /// Result type of the outer product.
    type OuterProductType;

    /// Computes the outer product: `a * b`
    fn outer(&self, other: &Self) -> Self::OuterProductType;
}

/// Trait for computing the covariance of a set of data.
pub trait Cov<M> {
    /// Computes the covariance of the obsevations stored by `m`:
    ///
    ///   * For matrices, observations are stored in its rows.
    ///   * For vectors, observations are stored in its components (thus are 1-dimensional).
    fn cov(&self) -> M;

    /// Computes the covariance of the obsevations stored by `m`:
    ///
    ///   * For matrices, observations are stored in its rows.
    ///   * For vectors, observations are stored in its components (thus are 1-dimensional).
    fn cov_to(&self, out: &mut M) {
        *out = self.cov()
    }
}

/// Trait for computing the mean of a set of data.
pub trait Mean<N> {
    /// Computes the mean of the observations stored by `v`.
    /// 
    ///   * For matrices, observations are stored in its rows.
    ///   * For vectors, observations are stored in its components (thus are 1-dimensional).
    fn mean(&self) -> N;
}

/// Trait for computing the eigenvector and eigenvalues of a square matrix usin the QR algorithm.
pub trait EigenQR<N, V: Mul<Self, Output = V>>: SquareMat<N, V> {
    /// Computes the eigenvectors and eigenvalues of this matrix.
    fn eigen_qr(&self, eps: &N, niter: usize) -> (Self, V);
}

/// Trait of objects implementing the `y = ax + y` operation.
pub trait Axpy<N> {
    /// Adds $$a * x$$ to `self`.
    fn axpy(&mut self, a: &N, x: &Self);
}

/*
 *
 *
 * Some implementations for scalar types.
 *
 *
 */
// FIXME: move this to another module ?
macro_rules! impl_absolute(
    ($n: ty) => {
        impl Absolute<$n> for $n {
            #[inline]
            fn abs(n: &$n) -> $n {
                n.abs()
            }
        }
    }
);
macro_rules! impl_absolute_id(
    ($n: ty) => {
        impl Absolute<$n> for $n {
            #[inline]
            fn abs(n: &$n) -> $n {
                *n
            }
        }
    }
);

impl_absolute!(f32);
impl_absolute!(f64);
impl_absolute!(i8);
impl_absolute!(i16);
impl_absolute!(i32);
impl_absolute!(i64);
impl_absolute!(isize);
impl_absolute_id!(u8);
impl_absolute_id!(u16);
impl_absolute_id!(u32);
impl_absolute_id!(u64);
impl_absolute_id!(usize);

macro_rules! impl_axpy(
    ($n: ty) => {
        impl Axpy<$n> for $n {
            #[inline]
            fn axpy(&mut self, a: &$n, x: &$n) {
                *self = *self + *a * *x
            }
        }
    }
);

impl_axpy!(f32);
impl_axpy!(f64);
impl_axpy!(i8);
impl_axpy!(i16);
impl_axpy!(i32);
impl_axpy!(i64);
impl_axpy!(isize);
impl_axpy!(u8);
impl_axpy!(u16);
impl_axpy!(u32);
impl_axpy!(u64);
impl_axpy!(usize);