1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
use traits::structure::{BaseFloat, Cast};
use structs::{Pnt3, Vec3, Mat4};

#[cfg(feature="arbitrary")]
use quickcheck::{Arbitrary, Gen};


/// A 3D orthographic projection stored without any matrix.
///
/// This flips the `z` axis and maps a axis-aligned cube to the unit cube with corners varying from
/// `(-1, -1, -1)` to `(1, 1, 1)`. Reading or modifying its individual properties is cheap but
/// applying the transformation is costly.
#[derive(Eq, PartialEq, RustcEncodable, RustcDecodable, Clone, Debug, Copy)]
pub struct Ortho3<N> {
    left:   N,
    right:  N,
    bottom: N,
    top:    N,
    znear:  N,
    zfar:   N
}

/// A 3D orthographic projection stored as a 4D matrix.
///
/// This flips the `z` axis and maps a axis-aligned cube to the unit cube with corners varying from
/// `(-1, -1, -1)` to `(1, 1, 1)`. Reading or modifying its individual properties is costly but
/// applying the transformation is cheap.
#[derive(Eq, PartialEq, RustcEncodable, RustcDecodable, Clone, Debug, Copy)]
pub struct OrthoMat3<N> {
    mat: Mat4<N>
}

impl<N: BaseFloat> Ortho3<N> {
    /// Creates a new 3D orthographic projection.
    pub fn new(left: N, right: N, bottom: N, top: N, znear: N, zfar: N) -> Ortho3<N> {
        assert!(!::is_zero(&(zfar - znear)));
        assert!(!::is_zero(&(left - right)));
        assert!(!::is_zero(&(top - bottom)));

        Ortho3 {
            left:   left,
            right:  right,
            bottom: bottom,
            top:    top,
            znear:  znear,
            zfar:   zfar
        }
    }

    /// Builds a 4D projection matrix (using homogeneous coordinates) for this projection.
    pub fn to_mat(&self) -> Mat4<N> {
        self.to_persp_mat().mat
    }

    /// Build a `OrthoMat3` representing this projection.
    pub fn to_persp_mat(&self) -> OrthoMat3<N> {
        OrthoMat3::new(self.left, self.right, self.bottom, self.top, self.znear, self.zfar)
    }
}

#[cfg(feature="arbitrary")]
impl<N: Arbitrary + BaseFloat> Arbitrary for Ortho3<N> {
    fn arbitrary<G: Gen>(g: &mut G) -> Ortho3<N> {
        let left   = Arbitrary::arbitrary(g);
        let right  = reject(g, |x: &N| *x > left);
        let bottom = Arbitrary::arbitrary(g);
        let top    = reject(g, |x: &N| *x > bottom);
        let znear  = Arbitrary::arbitrary(g);
        let zfar   = reject(g, |x: &N| *x > znear);
        Ortho3::new(left, right, bottom, top, znear, zfar)
    }
}

impl<N: BaseFloat + Clone> Ortho3<N> {
    /// The smallest x-coordinate of the view cuboid.
    #[inline]
    pub fn left(&self) -> N {
        self.left.clone()
    }

    /// The largest x-coordinate of the view cuboid.
    #[inline]
    pub fn right(&self) -> N {
        self.right.clone()
    }

    /// The smallest y-coordinate of the view cuboid.
    #[inline]
    pub fn bottom(&self) -> N {
        self.bottom.clone()
    }

    /// The largest y-coordinate of the view cuboid.
    #[inline]
    pub fn top(&self) -> N {
        self.top.clone()
    }

    /// The near plane offset of the view cuboid.
    #[inline]
    pub fn znear(&self) -> N {
        self.znear.clone()
    }

    /// The far plane offset of the view cuboid.
    #[inline]
    pub fn zfar(&self) -> N {
        self.zfar.clone()
    }

    /// Sets the smallest x-coordinate of the view cuboid.
    #[inline]
    pub fn set_left(&mut self, left: N) {
        assert!(left < self.right, "The left corner must be farther than the right corner.");
        self.left = left 
    }

    /// Sets the largest x-coordinate of the view cuboid.
    #[inline]
    pub fn set_right(&mut self, right: N) {
        assert!(right > self.left, "The left corner must be farther than the right corner.");
        self.right = right
    }

    /// Sets the smallest y-coordinate of the view cuboid.
    #[inline]
    pub fn set_bottom(&mut self, bottom: N) {
        assert!(bottom < self.top, "The top corner must be higher than the bottom corner.");
        self.bottom = bottom
    }

    /// Sets the largest y-coordinate of the view cuboid.
    #[inline]
    pub fn set_top(&mut self, top: N) {
        assert!(top > self.bottom, "The top corner must be higher than the left corner.");
        self.top = top
    }

    /// Sets the near plane offset of the view cuboid.
    #[inline]
    pub fn set_znear(&mut self, znear: N) {
        assert!(znear < self.zfar, "The far plane must be farther than the near plane.");
        self.znear = znear
    }

    /// Sets the far plane offset of the view cuboid.
    #[inline]
    pub fn set_zfar(&mut self, zfar: N) {
        assert!(zfar > self.znear, "The far plane must be farther than the near plane.");
        self.zfar = zfar
    }

    /// Projects a point.
    #[inline]
    pub fn project_pnt(&self, p: &Pnt3<N>) -> Pnt3<N> {
        // FIXME: optimize that
        self.to_persp_mat().project_pnt(p)
    }

    /// Projects a vector.
    #[inline]
    pub fn project_vec(&self, p: &Vec3<N>) -> Vec3<N> {
        // FIXME: optimize that
        self.to_persp_mat().project_vec(p)
    }
}

impl<N: BaseFloat> OrthoMat3<N> {
    /// Creates a new orthographic projection matrix.
    pub fn new(left: N, right: N, bottom: N, top: N, znear: N, zfar: N) -> OrthoMat3<N> {
        assert!(left < right, "The left corner must be farther than the right corner.");
        assert!(bottom < top, "The top corner must be higher than the bottom corner.");
        assert!(znear < zfar, "The far plane must be farther than the near plane.");

        let mat: Mat4<N> = ::one();

        let mut res = OrthoMat3 { mat: mat };
        res.set_left_and_right(left, right);
        res.set_bottom_and_top(bottom, top);
        res.set_znear_and_zfar(znear, zfar);

        res
    }

    /// Creates a new orthographic projection matrix from an aspect ratio and the vertical field of view.
    pub fn new_with_fov(aspect: N, vfov: N, znear: N, zfar: N) -> OrthoMat3<N> {
        assert!(znear < zfar, "The far plane must be farther than the near plane.");
        assert!(!::is_zero(&aspect));

        let _1: N = ::one();
        let _2 = _1 + _1;
        let width  = zfar * (vfov / _2).tan();
        let height = width / aspect;

        OrthoMat3::new(-width / _2, width / _2, -height / _2, height / _2, znear, zfar)
    }

    /// Creates a new orthographic matrix from a 4D matrix.
    ///
    /// This is unsafe because the input matrix is not checked to be a orthographic projection.
    #[inline]
    pub unsafe fn new_with_mat(mat: Mat4<N>) -> OrthoMat3<N> {
        OrthoMat3 {
            mat: mat
        }
    }

    /// Returns a reference to the 4D matrix (using homogeneous coordinates) of this projection.
    #[inline]
    pub fn as_mat<'a>(&'a self) -> &'a Mat4<N> {
        &self.mat
    }

    /// The smallest x-coordinate of the view cuboid.
    #[inline]
    pub fn left(&self) -> N {
        (-::one::<N>() - self.mat.m14) / self.mat.m11
    }

    /// The largest x-coordinate of the view cuboid.
    #[inline]
    pub fn right(&self) -> N {
        (::one::<N>() - self.mat.m14) / self.mat.m11
    }

    /// The smallest y-coordinate of the view cuboid.
    #[inline]
    pub fn bottom(&self) -> N {
        (-::one::<N>() - self.mat.m24) / self.mat.m22
    }

    /// The largest y-coordinate of the view cuboid.
    #[inline]
    pub fn top(&self) -> N {
        (::one::<N>() - self.mat.m24) / self.mat.m22
    }

    /// The near plane offset of the view cuboid.
    #[inline]
    pub fn znear(&self) -> N {
        (::one::<N>() + self.mat.m34) / self.mat.m33
    }

    /// The far plane offset of the view cuboid.
    #[inline]
    pub fn zfar(&self) -> N {
        (-::one::<N>() + self.mat.m34) / self.mat.m33
    }

    /// Sets the smallest x-coordinate of the view cuboid.
    #[inline]
    pub fn set_left(&mut self, left: N) {
        let right = self.right();
        self.set_left_and_right(left, right);
    }

    /// Sets the largest x-coordinate of the view cuboid.
    #[inline]
    pub fn set_right(&mut self, right: N) {
        let left = self.left();
        self.set_left_and_right(left, right);
    }

    /// Sets the smallest y-coordinate of the view cuboid.
    #[inline]
    pub fn set_bottom(&mut self, bottom: N) {
        let top = self.top();
        self.set_bottom_and_top(bottom, top);
    }

    /// Sets the largest y-coordinate of the view cuboid.
    #[inline]
    pub fn set_top(&mut self, top: N) {
        let bottom = self.bottom();
        self.set_bottom_and_top(bottom, top);
    }

    /// Sets the near plane offset of the view cuboid.
    #[inline]
    pub fn set_znear(&mut self, znear: N) {
        let zfar = self.zfar();
        self.set_znear_and_zfar(znear, zfar);
    }

    /// Sets the far plane offset of the view cuboid.
    #[inline]
    pub fn set_zfar(&mut self, zfar: N) {
        let znear = self.znear();
        self.set_znear_and_zfar(znear, zfar);
    }

    /// Sets the view cuboid coordinates along the `x` axis.
    #[inline]
    pub fn set_left_and_right(&mut self, left: N, right: N) {
        assert!(left < right, "The left corner must be farther than the right corner.");
        self.mat.m11 = <N as Cast<f64>>::from(2.0) / (right - left);
        self.mat.m14 = -(right + left) / (right - left);
    }

    /// Sets the view cuboid coordinates along the `y` axis.
    #[inline]
    pub fn set_bottom_and_top(&mut self, bottom: N, top: N) {
        assert!(bottom < top, "The top corner must be higher than the bottom corner.");
        self.mat.m22 = <N as Cast<f64>>::from(2.0) / (top - bottom);
        self.mat.m24 = -(top + bottom) / (top - bottom);
    }

    /// Sets the near and far plane offsets of the view cuboid.
    #[inline]
    pub fn set_znear_and_zfar(&mut self, znear: N, zfar: N) {
        assert!(!::is_zero(&(zfar - znear)));
        self.mat.m33 = -<N as Cast<f64>>::from(2.0) / (zfar - znear);
        self.mat.m34 = -(zfar + znear) / (zfar - znear);
    }

    /// Projects a point.
    #[inline]
    pub fn project_pnt(&self, p: &Pnt3<N>) -> Pnt3<N> {
        Pnt3::new(
            self.mat.m11 * p.x + self.mat.m14,
            self.mat.m22 * p.y + self.mat.m24,
            self.mat.m33 * p.z + self.mat.m34
        )
    }

    /// Projects a vector.
    #[inline]
    pub fn project_vec(&self, p: &Vec3<N>) -> Vec3<N> {
        Vec3::new(
            self.mat.m11 * p.x,
            self.mat.m22 * p.y,
            self.mat.m33 * p.z
        )
    }
}

impl<N: BaseFloat + Clone> OrthoMat3<N> {
    /// Returns the 4D matrix (using homogeneous coordinates) of this projection.
    #[inline]
    pub fn to_mat<'a>(&'a self) -> Mat4<N> {
        self.mat.clone()
    }
}

#[cfg(feature="arbitrary")]
impl<N: Arbitrary + BaseFloat> Arbitrary for OrthoMat3<N> {
    fn arbitrary<G: Gen>(g: &mut G) -> OrthoMat3<N> {
        let x: Ortho3<N> = Arbitrary::arbitrary(g);
        x.to_persp_mat()
    }
}


/// Simple helper function for rejection sampling
#[cfg(feature="arbitrary")]
#[inline]
pub fn reject<G: Gen, F: FnMut(&T) -> bool, T: Arbitrary>(g: &mut G, f: F) -> T {
    use std::iter::repeat;
    repeat(()).map(|_| Arbitrary::arbitrary(g)).filter(f).next().unwrap()
}