Type Definition nalgebra::base::MatrixN[][src]

type MatrixN<N, D> = MatrixMN<N, D, D>;

A staticaly sized column-major square matrix with D rows and columns.

Methods

impl<N, D: DimName> MatrixN<N, D> where
    N: Scalar + Ring,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

Creates a new homogeneous matrix that applies the same scaling factor on each dimension.

Creates a new homogeneous matrix that applies a distinct scaling factor for each dimension.

Creates a new homogeneous matrix that applies a pure translation.

impl<N, D: Dim> MatrixN<N, D> where
    N: Scalar,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

Creates a square matrix with its diagonal set to diag and all other entries set to 0.

Trait Implementations

impl<N, D: DimName> Product for MatrixN<N, D> where
    N: Scalar + Zero + One + ClosedMul + ClosedAdd,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

Method which takes an iterator and generates Self from the elements by multiplying the items. Read more

impl<'a, N, D: DimName> Product<&'a MatrixN<N, D>> for MatrixN<N, D> where
    N: Scalar + Zero + One + ClosedMul + ClosedAdd,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

Method which takes an iterator and generates Self from the elements by multiplying the items. Read more

impl<N: Real, D: DimNameSub<U1>> Transformation<Point<N, DimNameDiff<D, U1>>> for MatrixN<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameDiff<D, U1>> + Allocator<N, DimNameDiff<D, U1>, DimNameDiff<D, U1>>, 
[src]

Applies this group's action on a vector from the euclidean space. Read more

Applies this group's action on a point from the euclidean space.

impl<N, D: DimName> One for MatrixN<N, D> where
    N: Scalar + Zero + One + ClosedMul + ClosedAdd,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

Returns the multiplicative identity element of Self, 1. Read more

Returns true if self is equal to the multiplicative identity. Read more

impl<N, D: DimName> Identity<Multiplicative> for MatrixN<N, D> where
    N: Scalar + Zero + One,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

The identity element.

Specific identity.

impl<N, D: DimName> AbstractMagma<Multiplicative> for MatrixN<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

Performs an operation.

Performs specific operation.

impl<N, D: DimName> AbstractSemigroup<Multiplicative> for MatrixN<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + AbstractSemigroup<Multiplicative>,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

Returns true if associativity holds for the given arguments.

impl<N, D: DimName> AbstractMonoid<Multiplicative> for MatrixN<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + AbstractMonoid<Multiplicative> + One,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl<N1, N2, D> SubsetOf<MatrixN<N2, DimNameSum<D, U1>>> for Rotation<N1, D> where
    N1: Real,
    N2: Real + SupersetOf<N1>,
    D: DimNameAdd<U1> + DimMin<D, Output = D>,
    DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D>, 
[src]

The inclusion map: converts self to the equivalent element of its superset.

Checks if element is actually part of the subset Self (and can be converted to it).

Use with care! Same as self.to_superset but without any property checks. Always succeeds.

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, D> SubsetOf<MatrixN<N2, DimNameSum<D, U1>>> for Translation<N1, D> where
    N1: Real,
    N2: Real + SupersetOf<N1>,
    D: DimNameAdd<U1>,
    DefaultAllocator: Allocator<N1, D> + Allocator<N2, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>, 
[src]

The inclusion map: converts self to the equivalent element of its superset.

Checks if element is actually part of the subset Self (and can be converted to it).

Use with care! Same as self.to_superset but without any property checks. Always succeeds.

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, D, R> SubsetOf<MatrixN<N2, DimNameSum<D, U1>>> for Isometry<N1, D, R> where
    N1: Real,
    N2: Real + SupersetOf<N1>,
    R: Rotation<Point<N1, D>> + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
    D: DimNameAdd<U1> + DimMin<D, Output = D>,
    DefaultAllocator: Allocator<N1, D> + Allocator<N1, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D> + Allocator<N2, D, D> + Allocator<N2, D>, 
[src]

The inclusion map: converts self to the equivalent element of its superset.

Checks if element is actually part of the subset Self (and can be converted to it).

Use with care! Same as self.to_superset but without any property checks. Always succeeds.

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, D, R> SubsetOf<MatrixN<N2, DimNameSum<D, U1>>> for Similarity<N1, D, R> where
    N1: Real,
    N2: Real + SupersetOf<N1>,
    R: Rotation<Point<N1, D>> + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
    D: DimNameAdd<U1> + DimMin<D, Output = D>,
    DefaultAllocator: Allocator<N1, D> + Allocator<N1, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, D, D> + Allocator<N2, D>, 
[src]

The inclusion map: converts self to the equivalent element of its superset.

Checks if element is actually part of the subset Self (and can be converted to it).

Use with care! Same as self.to_superset but without any property checks. Always succeeds.

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, D: DimName, C> SubsetOf<MatrixN<N2, DimNameSum<D, U1>>> for Transform<N1, D, C> where
    N1: Real + SubsetOf<N2>,
    N2: Real,
    C: TCategory,
    D: DimNameAdd<U1>,
    DefaultAllocator: Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>,
    N1::Epsilon: Copy,
    N2::Epsilon: Copy
[src]

The inclusion map: converts self to the equivalent element of its superset.

Checks if element is actually part of the subset Self (and can be converted to it).

Use with care! Same as self.to_superset but without any property checks. Always succeeds.

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more