Struct nalgebra::geometry::RotationBase [] [src]

#[repr(C)]
pub struct RotationBase<N: Scalar, D: DimName, S> { /* fields omitted */ }

A rotation matrix.

Methods

impl<N: Scalar, D: DimName, S: Storage<N, D, D>> RotationBase<N, D, S> where
    N: Scalar,
    S: Storage<N, D, D>, 
[src]

A reference to the underlying matrix representation of this rotation.

A mutable reference to the underlying matrix representation of this rotation.

This is unsafe because this allows the user to replace the matrix by another one that is non-square, non-inversible, or non-orthonormal. If one of those properties is broken, subsequent method calls may be UB.

Unwraps the underlying matrix.

Converts this rotation into its equivalent homogeneous transformation matrix.

impl<N: Scalar, D: DimName, S: Storage<N, D, D>> RotationBase<N, D, S>
[src]

Creates a new rotation from the given square matrix.

The matrix squareness is checked but not its orthonormality.

Transposes self.

Inverts self.

impl<N: Scalar, D: DimName, S: StorageMut<N, D, D>> RotationBase<N, D, S>
[src]

Transposes self in-place.

Inverts self in-place.

impl<N, D: DimName, S> RotationBase<N, D, S> where
    N: Scalar + Zero + One,
    S: OwnedStorage<N, D, D>,
    S::Alloc: OwnedAllocator<N, D, D, S>, 
[src]

Creates a new square identity rotation of the given dimension.

impl<N, S> RotationBase<N, U2, S> where
    N: Real,
    S: OwnedStorage<N, U2, U2>,
    S::Alloc: OwnedAllocator<N, U2, U2, S>, 
[src]

Builds a 2 dimensional rotation matrix from an angle in radian.

Builds a 2 dimensional rotation matrix from an angle in radian wrapped in a 1-dimensional vector.

Equivalent to Self::new(axisangle[0]).

The rotation matrix required to align a and b but with its angl.

This is the rotation R such that (R * a).angle(b) == 0 && (R * a).dot(b).is_positive().

The smallest rotation needed to make a and b collinear and point toward the same direction, raised to the power s.

impl<N, S> RotationBase<N, U2, S> where
    N: Real,
    S: Storage<N, U2, U2>, 
[src]

The rotation angle.

The rotation angle needed to make self and other coincide.

The rotation matrix needed to make self and other coincide.

The result is such that: self.rotation_to(other) * self == other.

Raise the quaternion to a given floating power, i.e., returns the rotation with the angle of self multiplied by n.

The rotation angle returned as a 1-dimensional vector.

impl<N, S> RotationBase<N, U3, S> where
    N: Real,
    S: OwnedStorage<N, U3, U3>,
    S::Alloc: OwnedAllocator<N, U3, U3, S>, 
[src]

Builds a 3 dimensional rotation matrix from an axis and an angle.

Arguments

  • axisangle - A vector representing the rotation. Its magnitude is the amount of rotation in radian. Its direction is the axis of rotation.

Builds a 3D rotation matrix from an axis scaled by the rotation angle.

Builds a 3D rotation matrix from an axis and a rotation angle.

Creates a new rotation from Euler angles.

The primitive rotations are applied in order: 1 roll − 2 pitch − 3 yaw.

Creates a rotation that corresponds to the local frame of an observer standing at the origin and looking toward dir.

It maps the view direction dir to the positive z axis.

Arguments

  • dir - The look direction, that is, direction the matrix z axis will be aligned with.
  • up - The vertical direction. The only requirement of this parameter is to not be collinear to dir. Non-collinearity is not checked.

Builds a right-handed look-at view matrix without translation.

This conforms to the common notion of right handed look-at matrix from the computer graphics community.

Arguments

  • eye - The eye position.
  • target - The target position.
  • up - A vector approximately aligned with required the vertical axis. The only requirement of this parameter is to not be collinear to target - eye.

Builds a left-handed look-at view matrix without translation.

This conforms to the common notion of left handed look-at matrix from the computer graphics community.

Arguments

  • eye - The eye position.
  • target - The target position.
  • up - A vector approximately aligned with required the vertical axis. The only requirement of this parameter is to not be collinear to target - eye.

The rotation matrix required to align a and b but with its angl.

This is the rotation R such that (R * a).angle(b) == 0 && (R * a).dot(b).is_positive().

The smallest rotation needed to make a and b collinear and point toward the same direction, raised to the power s.

impl<N, S> RotationBase<N, U3, S> where
    N: Real,
    S: Storage<N, U3, U3>, 
[src]

The rotation angle.

impl<N, S> RotationBase<N, U3, S> where
    N: Real,
    S: Storage<N, U3, U3>,
    S::Alloc: Allocator<N, U3, U1>, 
[src]

The rotation axis. Returns None if the rotation angle is zero or PI.

The rotation axis multiplied by the rotation angle.

The rotation angle needed to make self and other coincide.

The rotation matrix needed to make self and other coincide.

The result is such that: self.rotation_to(other) * self == other.

Raise the quaternion to a given floating power, i.e., returns the rotation with the same axis as self and an angle equal to self.angle() multiplied by n.

Trait Implementations

impl<N: Hash + Scalar, D: Hash + DimName, S: Hash> Hash for RotationBase<N, D, S>
[src]

Feeds this value into the given [Hasher]. Read more

Feeds a slice of this type into the given [Hasher]. Read more

impl<N: Debug + Scalar, D: Debug + DimName, S: Debug> Debug for RotationBase<N, D, S>
[src]

Formats the value using the given formatter.

impl<N: Clone + Scalar, D: Clone + DimName, S: Clone> Clone for RotationBase<N, D, S>
[src]

Returns a copy of the value. Read more

Performs copy-assignment from source. Read more

impl<N: Copy + Scalar, D: Copy + DimName, S: Copy> Copy for RotationBase<N, D, S>
[src]

impl<N: Scalar + Eq, D: DimName, S: Storage<N, D, D>> Eq for RotationBase<N, D, S>
[src]

impl<N: Scalar + PartialEq, D: DimName, S: Storage<N, D, D>> PartialEq for RotationBase<N, D, S>
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<N, D: DimName, S> ApproxEq for RotationBase<N, D, S> where
    N: Scalar + ApproxEq,
    S: Storage<N, D, D>,
    N::Epsilon: Copy
[src]

Used for specifying relative comparisons.

The default tolerance to use when testing values that are close together. Read more

The default relative tolerance for testing values that are far-apart. Read more

The default ULPs to tolerate when testing values that are far-apart. Read more

A test for equality that uses a relative comparison if the values are far apart.

A test for equality that uses units in the last place (ULP) if the values are far apart.

The inverse of ApproxEq::relative_eq.

The inverse of ApproxEq::ulps_eq.

impl<N, D: DimName, S> Display for RotationBase<N, D, S> where
    N: Real + Display,
    S: Storage<N, D, D>,
    S::Alloc: Allocator<usize, D, D>, 
[src]

Formats the value using the given formatter. Read more

impl<N, D: DimName, S> One for RotationBase<N, D, S> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul,
    S: OwnedStorage<N, D, D>,
    S::Alloc: OwnedAllocator<N, D, D, S>, 
[src]

Returns the multiplicative identity element of Self, 1. Read more

impl<N: Scalar, D: DimName, S: Storage<N, D, D>> Index<(usize, usize)> for RotationBase<N, D, S>
[src]

The returned type after indexing

The method for the indexing (container[index]) operation

impl<N, D: DimName, SA, SB> Mul<RotationBase<N, D, SB>> for RotationBase<N, D, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul,
    SA: Storage<N, D, D>,
    SB: Storage<N, D, D>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'a, N, D: DimName, SA, SB> Mul<RotationBase<N, D, SB>> for &'a RotationBase<N, D, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul,
    SA: Storage<N, D, D>,
    SB: Storage<N, D, D>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'b, N, D: DimName, SA, SB> Mul<&'b RotationBase<N, D, SB>> for RotationBase<N, D, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul,
    SA: Storage<N, D, D>,
    SB: Storage<N, D, D>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'a, 'b, N, D: DimName, SA, SB> Mul<&'b RotationBase<N, D, SB>> for &'a RotationBase<N, D, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul,
    SA: Storage<N, D, D>,
    SB: Storage<N, D, D>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<N, D: DimName, SA, SB> Div<RotationBase<N, D, SB>> for RotationBase<N, D, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul,
    SA: Storage<N, D, D>,
    SB: Storage<N, D, D>, 
[src]

The resulting type after applying the / operator

The method for the / operator

impl<'a, N, D: DimName, SA, SB> Div<RotationBase<N, D, SB>> for &'a RotationBase<N, D, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul,
    SA: Storage<N, D, D>,
    SB: Storage<N, D, D>, 
[src]

The resulting type after applying the / operator

The method for the / operator

impl<'b, N, D: DimName, SA, SB> Div<&'b RotationBase<N, D, SB>> for RotationBase<N, D, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul,
    SA: Storage<N, D, D>,
    SB: Storage<N, D, D>, 
[src]

The resulting type after applying the / operator

The method for the / operator

impl<'a, 'b, N, D: DimName, SA, SB> Div<&'b RotationBase<N, D, SB>> for &'a RotationBase<N, D, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul,
    SA: Storage<N, D, D>,
    SB: Storage<N, D, D>, 
[src]

The resulting type after applying the / operator

The method for the / operator

impl<N, D1: DimName, R2: Dim, C2: Dim, SA, SB> Mul<Matrix<N, R2, C2, SB>> for RotationBase<N, D1, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul,
    SA: Storage<N, D1, D1>,
    SB: Storage<N, R2, C2>,
    SA::Alloc: Allocator<N, D1, C2>,
    ShapeConstraint: AreMultipliable<D1, D1, R2, C2>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'a, N, D1: DimName, R2: Dim, C2: Dim, SA, SB> Mul<Matrix<N, R2, C2, SB>> for &'a RotationBase<N, D1, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul,
    SA: Storage<N, D1, D1>,
    SB: Storage<N, R2, C2>,
    SA::Alloc: Allocator<N, D1, C2>,
    ShapeConstraint: AreMultipliable<D1, D1, R2, C2>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'b, N, D1: DimName, R2: Dim, C2: Dim, SA, SB> Mul<&'b Matrix<N, R2, C2, SB>> for RotationBase<N, D1, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul,
    SA: Storage<N, D1, D1>,
    SB: Storage<N, R2, C2>,
    SA::Alloc: Allocator<N, D1, C2>,
    ShapeConstraint: AreMultipliable<D1, D1, R2, C2>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'a, 'b, N, D1: DimName, R2: Dim, C2: Dim, SA, SB> Mul<&'b Matrix<N, R2, C2, SB>> for &'a RotationBase<N, D1, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul,
    SA: Storage<N, D1, D1>,
    SB: Storage<N, R2, C2>,
    SA::Alloc: Allocator<N, D1, C2>,
    ShapeConstraint: AreMultipliable<D1, D1, R2, C2>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<N, D: DimName, SA, SB> Mul<PointBase<N, D, SB>> for RotationBase<N, D, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul,
    SA: Storage<N, D, D>,
    SB: Storage<N, D, U1>,
    SA::Alloc: Allocator<N, D, U1>,
    ShapeConstraint: AreMultipliable<D, D, D, U1>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'a, N, D: DimName, SA, SB> Mul<PointBase<N, D, SB>> for &'a RotationBase<N, D, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul,
    SA: Storage<N, D, D>,
    SB: Storage<N, D, U1>,
    SA::Alloc: Allocator<N, D, U1>,
    ShapeConstraint: AreMultipliable<D, D, D, U1>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'b, N, D: DimName, SA, SB> Mul<&'b PointBase<N, D, SB>> for RotationBase<N, D, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul,
    SA: Storage<N, D, D>,
    SB: Storage<N, D, U1>,
    SA::Alloc: Allocator<N, D, U1>,
    ShapeConstraint: AreMultipliable<D, D, D, U1>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'a, 'b, N, D: DimName, SA, SB> Mul<&'b PointBase<N, D, SB>> for &'a RotationBase<N, D, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul,
    SA: Storage<N, D, D>,
    SB: Storage<N, D, U1>,
    SA::Alloc: Allocator<N, D, U1>,
    ShapeConstraint: AreMultipliable<D, D, D, U1>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<N, D: DimName, SA, SB> MulAssign<RotationBase<N, D, SB>> for RotationBase<N, D, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul,
    SA: OwnedStorage<N, D, D>,
    SB: Storage<N, D, D>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>, 
[src]

The method for the *= operator

impl<'b, N, D: DimName, SA, SB> MulAssign<&'b RotationBase<N, D, SB>> for RotationBase<N, D, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul,
    SA: OwnedStorage<N, D, D>,
    SB: Storage<N, D, D>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>, 
[src]

The method for the *= operator

impl<N, D: DimName, SA, SB> DivAssign<RotationBase<N, D, SB>> for RotationBase<N, D, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul,
    SA: OwnedStorage<N, D, D>,
    SB: Storage<N, D, D>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>, 
[src]

The method for the /= operator

impl<'b, N, D: DimName, SA, SB> DivAssign<&'b RotationBase<N, D, SB>> for RotationBase<N, D, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul,
    SA: OwnedStorage<N, D, D>,
    SB: Storage<N, D, D>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>, 
[src]

The method for the /= operator

impl<N, D: DimName, S> Identity<Multiplicative> for RotationBase<N, D, S> where
    N: Real,
    S: OwnedStorage<N, D, D>,
    S::Alloc: OwnedAllocator<N, D, D, S>, 
[src]

The identity element.

impl<N, D: DimName, S> Inverse<Multiplicative> for RotationBase<N, D, S> where
    N: Real,
    S: OwnedStorage<N, D, D>,
    S::Alloc: OwnedAllocator<N, D, D, S>, 
[src]

Returns the inverse of self, relative to the operator O.

In-place inversin of self.

impl<N, D: DimName, S> AbstractMagma<Multiplicative> for RotationBase<N, D, S> where
    N: Real,
    S: OwnedStorage<N, D, D>,
    S::Alloc: OwnedAllocator<N, D, D, S>, 
[src]

Performs an operation.

Performs specific operation.

impl<N, D: DimName, S> AbstractSemigroup<Multiplicative> for RotationBase<N, D, S> where
    N: Real,
    S: OwnedStorage<N, D, D>,
    S::Alloc: OwnedAllocator<N, D, D, S>, 
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

Returns true if associativity holds for the given arguments.

impl<N, D: DimName, S> AbstractMonoid<Multiplicative> for RotationBase<N, D, S> where
    N: Real,
    S: OwnedStorage<N, D, D>,
    S::Alloc: OwnedAllocator<N, D, D, S>, 
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl<N, D: DimName, S> AbstractQuasigroup<Multiplicative> for RotationBase<N, D, S> where
    N: Real,
    S: OwnedStorage<N, D, D>,
    S::Alloc: OwnedAllocator<N, D, D, S>, 
[src]

Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more

Returns true if latin squareness holds for the given arguments.

impl<N, D: DimName, S> AbstractLoop<Multiplicative> for RotationBase<N, D, S> where
    N: Real,
    S: OwnedStorage<N, D, D>,
    S::Alloc: OwnedAllocator<N, D, D, S>, 
[src]

impl<N, D: DimName, S> AbstractGroup<Multiplicative> for RotationBase<N, D, S> where
    N: Real,
    S: OwnedStorage<N, D, D>,
    S::Alloc: OwnedAllocator<N, D, D, S>, 
[src]

impl<N, D: DimName, SA, SB> Transformation<PointBase<N, D, SB>> for RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

Applies this group's action on a point from the euclidean space.

Applies this group's action on a vector from the euclidean space. Read more

impl<N, D: DimName, SA, SB> ProjectiveTransformation<PointBase<N, D, SB>> for RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

Applies this group's inverse action on a point from the euclidean space.

Applies this group's inverse action on a vector from the euclidean space. Read more

impl<N, D: DimName, SA, SB> AffineTransformation<PointBase<N, D, SB>> for RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

Type of the first rotation to be applied.

Type of the non-uniform scaling to be applied.

The type of the pure translation part of this affine transformation.

Decomposes this affine transformation into a rotation followed by a non-uniform scaling, followed by a rotation, followed by a translation. Read more

Appends a translation to this similarity.

Prepends a translation to this similarity.

Appends a rotation to this similarity.

Prepends a rotation to this similarity.

Appends a scaling factor to this similarity.

Prepends a scaling factor to this similarity.

Appends to this similarity a rotation centered at the point p, i.e., this point is left invariant. Read more

impl<N, D: DimName, SA, SB> Similarity<PointBase<N, D, SB>> for RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

The type of the pure (uniform) scaling part of this similarity transformation.

The pure translational component of this similarity transformation.

The pure rotational component of this similarity transformation.

The pure scaling component of this similarity transformation.

Applies this transformation's pure translational part to a point.

Applies this transformation's pure rotational part to a point.

Applies this transformation's pure scaling part to a point.

Applies this transformation's pure rotational part to a vector.

Applies this transformation's pure scaling part to a vector.

Applies this transformation inverse's pure translational part to a point.

Applies this transformation inverse's pure rotational part to a point.

Applies this transformation inverse's pure scaling part to a point.

Applies this transformation inverse's pure rotational part to a vector.

Applies this transformation inverse's pure scaling part to a vector.

impl<N, D: DimName, SA, SB> Isometry<PointBase<N, D, SB>> for RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

impl<N, D: DimName, SA, SB> DirectIsometry<PointBase<N, D, SB>> for RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

impl<N, D: DimName, SA, SB> OrthogonalTransformation<PointBase<N, D, SB>> for RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

impl<N, D: DimName, SA, SB> Rotation<PointBase<N, D, SB>> for RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

Subgroups of the n-dimensional rotation group SO(n).

Raises this rotation to a power. If this is a simple rotation, the result must be equivalent to multiplying the rotation angle by n. Read more

Computes a simple rotation that makes the angle between a and b equal to zero, i.e., b.angle(a * delta_rotation(a, b)) = 0. If a and b are collinear, the computed rotation may not be unique. Returns None if no such simple rotation exists in the subgroup represented by Self. Read more

Computes the rotation between a and b and raises it to the power n. Read more

impl<N1, N2, D: DimName, SA, SB> SubsetOf<RotationBase<N2, D, SB>> for RotationBase<N1, D, SA> where
    N1: Real,
    N2: Real + SupersetOf<N1>,
    SA: OwnedStorage<N1, D, D>,
    SB: OwnedStorage<N2, D, D>,
    SA::Alloc: OwnedAllocator<N1, D, D, SA>,
    SB::Alloc: OwnedAllocator<N2, D, D, SB>, 
[src]

The inclusion map: converts self to the equivalent element of its superset.

Checks if element is actually part of the subset Self (and can be converted to it).

Use with care! Same as self.to_superset but without any property checks. Always succeeds.

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, SA, SB> SubsetOf<UnitQuaternionBase<N2, SB>> for RotationBase<N1, U3, SA> where
    N1: Real,
    N2: Real + SupersetOf<N1>,
    SA: OwnedStorage<N1, U3, U3>,
    SB: OwnedStorage<N2, U4, U1>,
    SA::Alloc: OwnedAllocator<N1, U3, U3, SA> + Allocator<N1, U4, U1> + Allocator<N1, U3, U1>,
    SB::Alloc: OwnedAllocator<N2, U4, U1, SB> + Allocator<N2, U3, U3>, 
[src]

The inclusion map: converts self to the equivalent element of its superset.

Checks if element is actually part of the subset Self (and can be converted to it).

Use with care! Same as self.to_superset but without any property checks. Always succeeds.

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, D: DimName, SA, SB, R> SubsetOf<IsometryBase<N2, D, SB, R>> for RotationBase<N1, D, SA> where
    N1: Real,
    N2: Real + SupersetOf<N1>,
    SA: OwnedStorage<N1, D, D>,
    SB: OwnedStorage<N2, D, U1>,
    R: AlgaRotation<PointBase<N2, D, SB>> + SupersetOf<RotationBase<N1, D, SA>>,
    SA::Alloc: OwnedAllocator<N1, D, D, SA>,
    SB::Alloc: OwnedAllocator<N2, D, U1, SB>, 
[src]

The inclusion map: converts self to the equivalent element of its superset.

Checks if element is actually part of the subset Self (and can be converted to it).

Use with care! Same as self.to_superset but without any property checks. Always succeeds.

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, D: DimName, SA, SB, R> SubsetOf<SimilarityBase<N2, D, SB, R>> for RotationBase<N1, D, SA> where
    N1: Real,
    N2: Real + SupersetOf<N1>,
    SA: OwnedStorage<N1, D, D>,
    SB: OwnedStorage<N2, D, U1>,
    R: AlgaRotation<PointBase<N2, D, SB>> + SupersetOf<RotationBase<N1, D, SA>>,
    SA::Alloc: OwnedAllocator<N1, D, D, SA>,
    SB::Alloc: OwnedAllocator<N2, D, U1, SB>, 
[src]

The inclusion map: converts self to the equivalent element of its superset.

Checks if element is actually part of the subset Self (and can be converted to it).

Use with care! Same as self.to_superset but without any property checks. Always succeeds.

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, D, SA, SB, C> SubsetOf<TransformBase<N2, D, SB, C>> for RotationBase<N1, D, SA> where
    N1: Real,
    N2: Real + SupersetOf<N1>,
    SA: OwnedStorage<N1, D, D>,
    SB: OwnedStorage<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>,
    C: SuperTCategoryOf<TAffine>,
    D: DimNameAdd<U1>,
    SA::Alloc: OwnedAllocator<N1, D, D, SA> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>>,
    SB::Alloc: OwnedAllocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>, SB> + Allocator<N2, D, D> + Allocator<N2, U1, D>, 
[src]

The inclusion map: converts self to the equivalent element of its superset.

Checks if element is actually part of the subset Self (and can be converted to it).

Use with care! Same as self.to_superset but without any property checks. Always succeeds.

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, D, SA, SB> SubsetOf<SquareMatrix<N2, DimNameSum<D, U1>, SB>> for RotationBase<N1, D, SA> where
    N1: Real,
    N2: Real + SupersetOf<N1>,
    SA: OwnedStorage<N1, D, D>,
    SB: OwnedStorage<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>,
    D: DimNameAdd<U1>,
    SA::Alloc: OwnedAllocator<N1, D, D, SA> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>>,
    SB::Alloc: OwnedAllocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>, SB> + Allocator<N2, D, D> + Allocator<N2, U1, D>, 
[src]

The inclusion map: converts self to the equivalent element of its superset.

Checks if element is actually part of the subset Self (and can be converted to it).

Use with care! Same as self.to_superset but without any property checks. Always succeeds.

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N, S> Rand for RotationBase<N, U2, S> where
    N: Real + Rand,
    S: OwnedStorage<N, U2, U2>,
    S::Alloc: OwnedAllocator<N, U2, U2, S>, 
[src]

Generates a random instance of this type using the specified source of randomness. Read more

impl<N, S> Rand for RotationBase<N, U3, S> where
    N: Real + Rand,
    S: OwnedStorage<N, U3, U3>,
    S::Alloc: OwnedAllocator<N, U3, U3, S> + Allocator<N, U3, U1>, 
[src]

Generates a random instance of this type using the specified source of randomness. Read more

impl<'a, 'b, N, SA, SB> Mul<&'b UnitQuaternionBase<N, SB>> for &'a RotationBase<N, U3, SA> where
    N: Real,
    SA: Storage<N, U3, U3>,
    SB: Storage<N, U4, U1>,
    SA::Alloc: Allocator<N, U3, U1>,
    SB::Alloc: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'a, N, SA, SB> Mul<UnitQuaternionBase<N, SB>> for &'a RotationBase<N, U3, SA> where
    N: Real,
    SA: Storage<N, U3, U3>,
    SB: Storage<N, U4, U1>,
    SA::Alloc: Allocator<N, U3, U1>,
    SB::Alloc: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'b, N, SA, SB> Mul<&'b UnitQuaternionBase<N, SB>> for RotationBase<N, U3, SA> where
    N: Real,
    SA: Storage<N, U3, U3>,
    SB: Storage<N, U4, U1>,
    SA::Alloc: Allocator<N, U3, U1>,
    SB::Alloc: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<N, SA, SB> Mul<UnitQuaternionBase<N, SB>> for RotationBase<N, U3, SA> where
    N: Real,
    SA: Storage<N, U3, U3>,
    SB: Storage<N, U4, U1>,
    SA::Alloc: Allocator<N, U3, U1>,
    SB::Alloc: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'a, 'b, N, SA, SB> Div<&'b UnitQuaternionBase<N, SB>> for &'a RotationBase<N, U3, SA> where
    N: Real,
    SA: Storage<N, U3, U3>,
    SB: Storage<N, U4, U1>,
    SA::Alloc: Allocator<N, U3, U1>,
    SB::Alloc: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the / operator

The method for the / operator

impl<'a, N, SA, SB> Div<UnitQuaternionBase<N, SB>> for &'a RotationBase<N, U3, SA> where
    N: Real,
    SA: Storage<N, U3, U3>,
    SB: Storage<N, U4, U1>,
    SA::Alloc: Allocator<N, U3, U1>,
    SB::Alloc: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the / operator

The method for the / operator

impl<'b, N, SA, SB> Div<&'b UnitQuaternionBase<N, SB>> for RotationBase<N, U3, SA> where
    N: Real,
    SA: Storage<N, U3, U3>,
    SB: Storage<N, U4, U1>,
    SA::Alloc: Allocator<N, U3, U1>,
    SB::Alloc: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the / operator

The method for the / operator

impl<N, SA, SB> Div<UnitQuaternionBase<N, SB>> for RotationBase<N, U3, SA> where
    N: Real,
    SA: Storage<N, U3, U3>,
    SB: Storage<N, U4, U1>,
    SA::Alloc: Allocator<N, U3, U1>,
    SB::Alloc: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the / operator

The method for the / operator

impl<N, S> Mul<UnitComplex<N>> for RotationBase<N, U2, S> where
    N: Real,
    S: Storage<N, U2, U2>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'a, N, S> Mul<UnitComplex<N>> for &'a RotationBase<N, U2, S> where
    N: Real,
    S: Storage<N, U2, U2>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'b, N, S> Mul<&'b UnitComplex<N>> for RotationBase<N, U2, S> where
    N: Real,
    S: Storage<N, U2, U2>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'a, 'b, N, S> Mul<&'b UnitComplex<N>> for &'a RotationBase<N, U2, S> where
    N: Real,
    S: Storage<N, U2, U2>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<N, S> Div<UnitComplex<N>> for RotationBase<N, U2, S> where
    N: Real,
    S: Storage<N, U2, U2>, 
[src]

The resulting type after applying the / operator

The method for the / operator

impl<'a, N, S> Div<UnitComplex<N>> for &'a RotationBase<N, U2, S> where
    N: Real,
    S: Storage<N, U2, U2>, 
[src]

The resulting type after applying the / operator

The method for the / operator

impl<'b, N, S> Div<&'b UnitComplex<N>> for RotationBase<N, U2, S> where
    N: Real,
    S: Storage<N, U2, U2>, 
[src]

The resulting type after applying the / operator

The method for the / operator

impl<'a, 'b, N, S> Div<&'b UnitComplex<N>> for &'a RotationBase<N, U2, S> where
    N: Real,
    S: Storage<N, U2, U2>, 
[src]

The resulting type after applying the / operator

The method for the / operator

impl<N: Real, S> MulAssign<UnitComplex<N>> for RotationBase<N, U2, S> where
    S: OwnedStorage<N, U2, U2>,
    S::Alloc: OwnedAllocator<N, U2, U2, S>, 
[src]

The method for the *= operator

impl<'b, N: Real, S: Storage<N, U2, U2>> MulAssign<&'b UnitComplex<N>> for RotationBase<N, U2, S> where
    S: OwnedStorage<N, U2, U2>,
    S::Alloc: OwnedAllocator<N, U2, U2, S>, 
[src]

The method for the *= operator

impl<N: Real, S> DivAssign<UnitComplex<N>> for RotationBase<N, U2, S> where
    S: OwnedStorage<N, U2, U2>,
    S::Alloc: OwnedAllocator<N, U2, U2, S>, 
[src]

The method for the /= operator

impl<'b, N: Real, S: Storage<N, U2, U2>> DivAssign<&'b UnitComplex<N>> for RotationBase<N, U2, S> where
    S: OwnedStorage<N, U2, U2>,
    S::Alloc: OwnedAllocator<N, U2, U2, S>, 
[src]

The method for the /= operator

impl<N, D: DimName, SA, SB> Mul<TranslationBase<N, D, SB>> for RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'a, N, D: DimName, SA, SB> Mul<TranslationBase<N, D, SB>> for &'a RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'b, N, D: DimName, SA, SB> Mul<&'b TranslationBase<N, D, SB>> for RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'a, 'b, N, D: DimName, SA, SB> Mul<&'b TranslationBase<N, D, SB>> for &'a RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<N, D: DimName, SA, SB> Mul<IsometryBase<N, D, SB, RotationBase<N, D, SA>>> for RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'a, N, D: DimName, SA, SB> Mul<IsometryBase<N, D, SB, RotationBase<N, D, SA>>> for &'a RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'b, N, D: DimName, SA, SB> Mul<&'b IsometryBase<N, D, SB, RotationBase<N, D, SA>>> for RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'a, 'b, N, D: DimName, SA, SB> Mul<&'b IsometryBase<N, D, SB, RotationBase<N, D, SA>>> for &'a RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<N, D: DimName, SA, SB> Div<IsometryBase<N, D, SB, RotationBase<N, D, SA>>> for RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

The resulting type after applying the / operator

The method for the / operator

impl<'a, N, D: DimName, SA, SB> Div<IsometryBase<N, D, SB, RotationBase<N, D, SA>>> for &'a RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

The resulting type after applying the / operator

The method for the / operator

impl<'b, N, D: DimName, SA, SB> Div<&'b IsometryBase<N, D, SB, RotationBase<N, D, SA>>> for RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

The resulting type after applying the / operator

The method for the / operator

impl<'a, 'b, N, D: DimName, SA, SB> Div<&'b IsometryBase<N, D, SB, RotationBase<N, D, SA>>> for &'a RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

The resulting type after applying the / operator

The method for the / operator

impl<N, D: DimName, SA, SB> Mul<SimilarityBase<N, D, SB, RotationBase<N, D, SA>>> for RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'a, N, D: DimName, SA, SB> Mul<SimilarityBase<N, D, SB, RotationBase<N, D, SA>>> for &'a RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'b, N, D: DimName, SA, SB> Mul<&'b SimilarityBase<N, D, SB, RotationBase<N, D, SA>>> for RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'a, 'b, N, D: DimName, SA, SB> Mul<&'b SimilarityBase<N, D, SB, RotationBase<N, D, SA>>> for &'a RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<N, D: DimName, SA, SB> Div<SimilarityBase<N, D, SB, RotationBase<N, D, SA>>> for RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

The resulting type after applying the / operator

The method for the / operator

impl<'a, N, D: DimName, SA, SB> Div<SimilarityBase<N, D, SB, RotationBase<N, D, SA>>> for &'a RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

The resulting type after applying the / operator

The method for the / operator

impl<'b, N, D: DimName, SA, SB> Div<&'b SimilarityBase<N, D, SB, RotationBase<N, D, SA>>> for RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

The resulting type after applying the / operator

The method for the / operator

impl<'a, 'b, N, D: DimName, SA, SB> Div<&'b SimilarityBase<N, D, SB, RotationBase<N, D, SA>>> for &'a RotationBase<N, D, SA> where
    N: Real,
    SA: OwnedStorage<N, D, D>,
    SB: OwnedStorage<N, D, U1, Alloc = SA::Alloc>,
    SA::Alloc: OwnedAllocator<N, D, D, SA>,
    SB::Alloc: OwnedAllocator<N, D, U1, SB>, 
[src]

The resulting type after applying the / operator

The method for the / operator

impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, SA, SB> Mul<TransformBase<N, D, SB, C>> for RotationBase<N, D, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul + One,
    SA: Storage<N, D, D>,
    SB: Storage<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
    SA::Alloc: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, SA, SB> Mul<TransformBase<N, D, SB, C>> for &'a RotationBase<N, D, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul + One,
    SA: Storage<N, D, D>,
    SB: Storage<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
    SA::Alloc: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, SA, SB> Mul<&'b TransformBase<N, D, SB, C>> for RotationBase<N, D, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul + One,
    SA: Storage<N, D, D>,
    SB: Storage<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
    SA::Alloc: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, SA, SB> Mul<&'b TransformBase<N, D, SB, C>> for &'a RotationBase<N, D, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul + One,
    SA: Storage<N, D, D>,
    SB: Storage<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
    SA::Alloc: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, 
[src]

The resulting type after applying the * operator

The method for the * operator

impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, SA, SB> Div<TransformBase<N, D, SB, C>> for RotationBase<N, D, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul + One,
    SA: Storage<N, D, D>,
    SB: Storage<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
    SA::Alloc: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, 
[src]

The resulting type after applying the / operator

The method for the / operator

impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, SA, SB> Div<TransformBase<N, D, SB, C>> for &'a RotationBase<N, D, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul + One,
    SA: Storage<N, D, D>,
    SB: Storage<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
    SA::Alloc: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, 
[src]

The resulting type after applying the / operator

The method for the / operator

impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, SA, SB> Div<&'b TransformBase<N, D, SB, C>> for RotationBase<N, D, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul + One,
    SA: Storage<N, D, D>,
    SB: Storage<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
    SA::Alloc: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, 
[src]

The resulting type after applying the / operator

The method for the / operator

impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, SA, SB> Div<&'b TransformBase<N, D, SB, C>> for &'a RotationBase<N, D, SA> where
    N: Scalar + Zero + ClosedAdd + ClosedMul + One,
    SA: Storage<N, D, D>,
    SB: Storage<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
    SA::Alloc: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, 
[src]

The resulting type after applying the / operator

The method for the / operator