1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
//! Sparsity patterns for CSR and CSC matrices.
use crate::cs::transpose_cs;
use crate::SparseFormatError;
use std::error::Error;
use std::fmt;

/// A representation of the sparsity pattern of a CSR or CSC matrix.
///
/// CSR and CSC matrices store matrices in a very similar fashion. In fact, in a certain sense,
/// they are transposed. More precisely, when reinterpreting the three data arrays of a CSR
/// matrix as a CSC matrix, we obtain the CSC representation of its transpose.
///
/// [`SparsityPattern`] is an abstraction built on this observation. Whereas CSR matrices
/// store a matrix row-by-row, and a CSC matrix stores a matrix column-by-column, a
/// `SparsityPattern` represents only the index data structure of a matrix *lane-by-lane*.
/// Here, a *lane* is a generalization of rows and columns. We further define *major lanes*
/// and *minor lanes*. The sparsity pattern of a CSR matrix is then obtained by interpreting
/// major/minor as row/column. Conversely, we obtain the sparsity pattern of a CSC matrix by
/// interpreting major/minor as column/row.
///
/// This allows us to use a common abstraction to talk about sparsity patterns of CSR and CSC
/// matrices. This is convenient, because at the abstract level, the invariants of the formats
/// are the same. Hence we may encode the invariants of the index data structure separately from
/// the scalar values of the matrix. This is especially useful in applications where the
/// sparsity pattern is built ahead of the matrix values, or the same sparsity pattern is re-used
/// between different matrices. Finally, we can use `SparsityPattern` to encode adjacency
/// information in graphs.
///
/// # Format
///
/// The format is exactly the same as for the index data structures of CSR and CSC matrices.
/// This means that the sparsity pattern of an `m x n` sparse matrix with `nnz` non-zeros,
/// where in this case `m x n` does *not* mean `rows x columns`, but rather `majors x minors`,
/// is represented by the following two arrays:
///
/// - `major_offsets`, an array of integers with length `m + 1`.
/// - `minor_indices`, an array of integers with length `nnz`.
///
/// The invariants and relationship between `major_offsets` and `minor_indices` remain the same
/// as for `row_offsets` and `col_indices` in the [CSR](`crate::csr::CsrMatrix`) format
/// specification.
#[derive(Debug, Clone, PartialEq, Eq)]
// TODO: Make SparsityPattern parametrized by index type
// (need a solid abstraction for index types though)
pub struct SparsityPattern {
    major_offsets: Vec<usize>,
    minor_indices: Vec<usize>,
    minor_dim: usize,
}

impl SparsityPattern {
    /// Create a sparsity pattern of the given dimensions without explicitly stored entries.
    pub fn zeros(major_dim: usize, minor_dim: usize) -> Self {
        Self {
            major_offsets: vec![0; major_dim + 1],
            minor_indices: vec![],
            minor_dim,
        }
    }

    /// The offsets for the major dimension.
    #[inline]
    #[must_use]
    pub fn major_offsets(&self) -> &[usize] {
        &self.major_offsets
    }

    /// The indices for the minor dimension.
    #[inline]
    #[must_use]
    pub fn minor_indices(&self) -> &[usize] {
        &self.minor_indices
    }

    /// The number of major lanes in the pattern.
    #[inline]
    #[must_use]
    pub fn major_dim(&self) -> usize {
        assert!(self.major_offsets.len() > 0);
        self.major_offsets.len() - 1
    }

    /// The number of minor lanes in the pattern.
    #[inline]
    #[must_use]
    pub fn minor_dim(&self) -> usize {
        self.minor_dim
    }

    /// The number of "non-zeros", i.e. explicitly stored entries in the pattern.
    #[inline]
    #[must_use]
    pub fn nnz(&self) -> usize {
        self.minor_indices.len()
    }

    /// Get the lane at the given index.
    ///
    /// Panics
    /// ------
    ///
    /// Panics if `major_index` is out of bounds.
    #[inline]
    #[must_use]
    pub fn lane(&self, major_index: usize) -> &[usize] {
        self.get_lane(major_index).unwrap()
    }

    /// Get the lane at the given index, or `None` if out of bounds.
    #[inline]
    #[must_use]
    pub fn get_lane(&self, major_index: usize) -> Option<&[usize]> {
        let offset_begin = *self.major_offsets().get(major_index)?;
        let offset_end = *self.major_offsets().get(major_index + 1)?;
        Some(&self.minor_indices()[offset_begin..offset_end])
    }

    /// Try to construct a sparsity pattern from the given dimensions, major offsets
    /// and minor indices.
    ///
    /// Returns an error if the data does not conform to the requirements.
    pub fn try_from_offsets_and_indices(
        major_dim: usize,
        minor_dim: usize,
        major_offsets: Vec<usize>,
        minor_indices: Vec<usize>,
    ) -> Result<Self, SparsityPatternFormatError> {
        use SparsityPatternFormatError::*;

        if major_offsets.len() != major_dim + 1 {
            return Err(InvalidOffsetArrayLength);
        }

        // Check that the first and last offsets conform to the specification
        {
            let first_offset_ok = *major_offsets.first().unwrap() == 0;
            let last_offset_ok = *major_offsets.last().unwrap() == minor_indices.len();
            if !first_offset_ok || !last_offset_ok {
                return Err(InvalidOffsetFirstLast);
            }
        }

        // Test that each lane has strictly monotonically increasing minor indices, i.e.
        // minor indices within a lane are sorted, unique. In addition, each minor index
        // must be in bounds with respect to the minor dimension.
        {
            for lane_idx in 0..major_dim {
                let range_start = major_offsets[lane_idx];
                let range_end = major_offsets[lane_idx + 1];

                // Test that major offsets are monotonically increasing
                if range_start > range_end {
                    return Err(NonmonotonicOffsets);
                }

                let minor_indices = &minor_indices[range_start..range_end];

                // We test for in-bounds, uniqueness and monotonicity at the same time
                // to ensure that we only visit each minor index once
                let mut iter = minor_indices.iter();
                let mut prev = None;

                while let Some(next) = iter.next().copied() {
                    if next >= minor_dim {
                        return Err(MinorIndexOutOfBounds);
                    }

                    if let Some(prev) = prev {
                        if prev > next {
                            return Err(NonmonotonicMinorIndices);
                        } else if prev == next {
                            return Err(DuplicateEntry);
                        }
                    }
                    prev = Some(next);
                }
            }
        }

        Ok(Self {
            major_offsets,
            minor_indices,
            minor_dim,
        })
    }

    /// An iterator over the explicitly stored "non-zero" entries (i, j).
    ///
    /// The iteration happens in a lane-major fashion, meaning that the lane index i
    /// increases monotonically, and the minor index j increases monotonically within each
    /// lane i.
    ///
    /// Examples
    /// --------
    ///
    /// ```
    /// # use nalgebra_sparse::pattern::SparsityPattern;
    /// let offsets = vec![0, 2, 3, 4];
    /// let minor_indices = vec![0, 2, 1, 0];
    /// let pattern = SparsityPattern::try_from_offsets_and_indices(3, 4, offsets, minor_indices)
    ///     .unwrap();
    ///
    /// let entries: Vec<_> = pattern.entries().collect();
    /// assert_eq!(entries, vec![(0, 0), (0, 2), (1, 1), (2, 0)]);
    /// ```
    ///
    #[must_use]
    pub fn entries(&self) -> SparsityPatternIter {
        SparsityPatternIter::from_pattern(self)
    }

    /// Returns the raw offset and index data for the sparsity pattern.
    ///
    /// Examples
    /// --------
    ///
    /// ```
    /// # use nalgebra_sparse::pattern::SparsityPattern;
    /// let offsets = vec![0, 2, 3, 4];
    /// let minor_indices = vec![0, 2, 1, 0];
    /// let pattern = SparsityPattern::try_from_offsets_and_indices(
    ///         3,
    ///         4,
    ///         offsets.clone(),
    ///         minor_indices.clone())
    ///     .unwrap();
    /// let (offsets2, minor_indices2) = pattern.disassemble();
    /// assert_eq!(offsets2, offsets);
    /// assert_eq!(minor_indices2, minor_indices);
    /// ```
    pub fn disassemble(self) -> (Vec<usize>, Vec<usize>) {
        (self.major_offsets, self.minor_indices)
    }

    /// Computes the transpose of the sparsity pattern.
    ///
    /// This is analogous to matrix transposition, i.e. an entry `(i, j)` becomes `(j, i)` in the
    /// new pattern.
    #[must_use]
    pub fn transpose(&self) -> Self {
        // By using unit () values, we can use the same routines as for CSR/CSC matrices
        let values = vec![(); self.nnz()];
        let (new_offsets, new_indices, _) = transpose_cs(
            self.major_dim(),
            self.minor_dim(),
            self.major_offsets(),
            self.minor_indices(),
            &values,
        );
        // TODO: Skip checks
        Self::try_from_offsets_and_indices(
            self.minor_dim(),
            self.major_dim(),
            new_offsets,
            new_indices,
        )
        .expect("Internal error: Transpose should never fail.")
    }
}

/// Error type for `SparsityPattern` format errors.
#[non_exhaustive]
#[derive(Debug, PartialEq, Eq)]
pub enum SparsityPatternFormatError {
    /// Indicates an invalid number of offsets.
    ///
    /// The number of offsets must be equal to (major_dim + 1).
    InvalidOffsetArrayLength,
    /// Indicates that the first or last entry in the offset array did not conform to
    /// specifications.
    ///
    /// The first entry must be 0, and the last entry must be exactly one greater than the
    /// major dimension.
    InvalidOffsetFirstLast,
    /// Indicates that the major offsets are not monotonically increasing.
    NonmonotonicOffsets,
    /// One or more minor indices are out of bounds.
    MinorIndexOutOfBounds,
    /// One or more duplicate entries were detected.
    ///
    /// Two entries are considered duplicates if they are part of the same major lane and have
    /// the same minor index.
    DuplicateEntry,
    /// Indicates that minor indices are not monotonically increasing within each lane.
    NonmonotonicMinorIndices,
}

impl From<SparsityPatternFormatError> for SparseFormatError {
    fn from(err: SparsityPatternFormatError) -> Self {
        use crate::SparseFormatErrorKind;
        use crate::SparseFormatErrorKind::*;
        use SparsityPatternFormatError::DuplicateEntry as PatternDuplicateEntry;
        use SparsityPatternFormatError::*;
        match err {
            InvalidOffsetArrayLength
            | InvalidOffsetFirstLast
            | NonmonotonicOffsets
            | NonmonotonicMinorIndices => {
                SparseFormatError::from_kind_and_error(InvalidStructure, Box::from(err))
            }
            MinorIndexOutOfBounds => {
                SparseFormatError::from_kind_and_error(IndexOutOfBounds, Box::from(err))
            }
            PatternDuplicateEntry => SparseFormatError::from_kind_and_error(
                #[allow(unused_qualifications)]
                SparseFormatErrorKind::DuplicateEntry,
                Box::from(err),
            ),
        }
    }
}

impl fmt::Display for SparsityPatternFormatError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            SparsityPatternFormatError::InvalidOffsetArrayLength => {
                write!(f, "Length of offset array is not equal to (major_dim + 1).")
            }
            SparsityPatternFormatError::InvalidOffsetFirstLast => {
                write!(f, "First or last offset is incompatible with format.")
            }
            SparsityPatternFormatError::NonmonotonicOffsets => {
                write!(f, "Offsets are not monotonically increasing.")
            }
            SparsityPatternFormatError::MinorIndexOutOfBounds => {
                write!(f, "A minor index is out of bounds.")
            }
            SparsityPatternFormatError::DuplicateEntry => {
                write!(f, "Input data contains duplicate entries.")
            }
            SparsityPatternFormatError::NonmonotonicMinorIndices => {
                write!(
                    f,
                    "Minor indices are not monotonically increasing within each lane."
                )
            }
        }
    }
}

impl Error for SparsityPatternFormatError {}

/// Iterator type for iterating over entries in a sparsity pattern.
#[derive(Debug, Clone)]
pub struct SparsityPatternIter<'a> {
    // See implementation of Iterator::next for an explanation of how these members are used
    major_offsets: &'a [usize],
    minor_indices: &'a [usize],
    current_lane_idx: usize,
    remaining_minors_in_lane: &'a [usize],
}

impl<'a> SparsityPatternIter<'a> {
    fn from_pattern(pattern: &'a SparsityPattern) -> Self {
        let first_lane_end = pattern.major_offsets().get(1).unwrap_or(&0);
        let minors_in_first_lane = &pattern.minor_indices()[0..*first_lane_end];
        Self {
            major_offsets: pattern.major_offsets(),
            minor_indices: pattern.minor_indices(),
            current_lane_idx: 0,
            remaining_minors_in_lane: minors_in_first_lane,
        }
    }
}

impl<'a> Iterator for SparsityPatternIter<'a> {
    type Item = (usize, usize);

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        // We ensure fast iteration across each lane by iteratively "draining" a slice
        // corresponding to the remaining column indices in the particular lane.
        // When we reach the end of this slice, we are at the end of a lane,
        // and we must do some bookkeeping for preparing the iteration of the next lane
        // (or stop iteration if we're through all lanes).
        // This way we can avoid doing unnecessary bookkeeping on every iteration,
        // instead paying a small price whenever we jump to a new lane.
        if let Some(minor_idx) = self.remaining_minors_in_lane.first() {
            let item = Some((self.current_lane_idx, *minor_idx));
            self.remaining_minors_in_lane = &self.remaining_minors_in_lane[1..];
            item
        } else {
            loop {
                // Keep skipping lanes until we found a non-empty lane or there are no more lanes
                if self.current_lane_idx + 2 >= self.major_offsets.len() {
                    // We've processed all lanes, so we're at the end of the iterator
                    // (note: keep in mind that offsets.len() == major_dim() + 1, hence we need +2)
                    return None;
                } else {
                    // Bump lane index and check if the lane is non-empty
                    self.current_lane_idx += 1;
                    let lower = self.major_offsets[self.current_lane_idx];
                    let upper = self.major_offsets[self.current_lane_idx + 1];
                    if upper > lower {
                        self.remaining_minors_in_lane = &self.minor_indices[(lower + 1)..upper];
                        return Some((self.current_lane_idx, self.minor_indices[lower]));
                    }
                }
            }
        }
    }
}