1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
//! ## deliciously succinct
//! [naan](https://en.wikipedia.org/wiki/Naan) is a functional programming prelude
//! for the Rust language that is:
//! * easy
//! * useful
//! * `std`- and `alloc`-optional
//! * _FAST_ - exclusively uses concrete types (no `dyn`amic dispatch) meaning near-zero perf cost
//!
//! ## Table of Contents
//! * [higher-kinded types](#higher-kinded-types)
//!   * [what?](#hkt---what-it-is)
//!   * [why?](#hkt---why-its-useful)
//!   * [how?](#hkt---how-its-done)
//! * [currying](#currying)
//!   * [what?](#currying---what-it-is)
//!   * [why?](#currying---why-its-useful)
//!   * [how?](#currying---how-its-done)
//! * [function composition](#function-composition)
//! * [typeclasses](#typeclasses)
//!   * [`append`, `identity`](#semigroup-and-monoid)
//!   * [`alt`, `empty`](#alt-and-plus)
//!   * [`fmap`, `map`](#functor)
//!   * [`bimap`, `lmap`, `rmap`](#bifunctor)
//!   * [`fold`, `filter`, `find`, `contains`, ...](#foldable)
//! * lazy IO
//!
//! ## Higher-Kinded Types
//! [Top](#table-of-contents) · [Next - Currying](#currying)
//!
//! ### HKT - What it is
//! [Top](#table-of-contents) · [Up - HKTs](#higher-kinded-types)
//!
//! When talking about types, it can be useful to be able to differentiate between a concrete type (`u8`, `Vec<u8>`, `Result<File, io::Error>`)
//! and a generic type without its parameters supplied. (`Vec`, `Option`, `Result`)
//!
//! For example, `Vec` is a 1-argument (_unary_) type function, and `Vec<u8>` is a concrete type.
//!
//! Kind refers to how many (if any) parameters a type has.
//!
//! ### HKT - Why it's useful
//! [Top](#table-of-contents) &middot; [Up - HKTs](#higher-kinded-types)
//! In vanilla Rust, `Result::map` and `Option::map` have very similar shapes:
//! ```rust,ignore
//! impl<A, E> Result<A, E> {
//!   fn map<B>(self, f: impl FnMut(A) -> B) -> Result<B, E>;
//! }
//!
//! impl<A> Option<A> {
//!   fn map<B>(self, f: impl FnMut(A) -> B) -> Option<B>;
//! }
//! ```
//! it would be useful (for reasons we'll expand on later) to have them
//! both implement a `Map` trait:
//! ```rust,ignore
//! trait Map<A> {
//!   fn map<B>(self: Self<A>, f: impl FnMut(A) -> B) -> Self<B>;
//! }
//!
//! impl<A> Map<A> for Option<A> {
//!  fn map<B>(self, f: impl FnMut(A) -> B) -> Option<B> {
//!    Option::map(self, f)
//!  }
//! }
//! ```
//! but this code snippet isn't legal Rust because `Self` needs to be generic and in vanilla Rust `Self` must be a concrete type.
//!
//! ### HKT - How it's done
//! [Top](#table-of-contents) &middot; [Up - HKTs](#higher-kinded-types)
//!
//! With the introduction of [Generic associated types](https://blog.rust-lang.org/2022/11/03/Rust-1.65.0.html#generic-associated-types-gats),
//! we can write a trait that can effectively replace a "generic self" feature.
//!
//! Now we can actually write the trait above in legal, stable rust:
//! ```rust
//! trait HKT {
//!   type Of<A>;
//! }
//!
//! struct OptionHKT;
//! impl HKT for OptionHKT {
//!   type Of<A> = Option<A>;
//! }
//!
//! trait Map<M, A>
//!   where M: HKT<Of<A> = Self>
//! {
//!   fn map<B, F>(self, f: F) -> M::Of<B>
//!     where F: FnMut(A) -> B;
//! }
//!
//! impl<A> Map<OptionHKT, A> for Option<A> {
//!   fn map<B, F>(self, f: F) -> Option<B>
//!     where F: FnMut(A) -> B
//!   {
//!     Option::map(self, f)
//!   }
//! }
//! ```
//!
//! ## Currying
//! [Top](#table-of-contents) &middot; [Prev - HKT](#higher-kinded-types) &middot; [Next - Function Composition](#function-composition)
//! ### Currying - What it is
//! [Top](#table-of-contents) &middot; [Up - Currying](#currying)
//!
//! *Currying* is the technique where `naan` gets its name. Function currying is the strategy of splitting functions that
//! accept more than one argument into multiple functions.
//!
//! Example:
//! ```rust,ignore
//! fn foo(String, usize) -> usize;
//! foo(format!("bar"), 12);
//! ```
//! would be curried into:
//! ```rust,ignore
//! fn foo(String) -> impl Fn(usize) -> usize;
//! foo(format!("bar"))(12);
//! ```
//!
//! ### Currying - Why it's useful
//! [Top](#table-of-contents) &middot; [Up - Currying](#currying)
//!
//! Currying allows us to provide _some_ of a function's arguments and provide the rest of this
//! partially applied function's arguments at a later date.
//!
//! This allows us to use functions to store state, and lift functions that accept any number
//! of parameters to accept Results using [`Apply`](https://docs.rs/naan/latest/naan/apply/trait.Apply.html#example)
//!
//! <details>
//! <summary>
//!
//! **EXAMPLE: reusable function with a stored parameter**
//! </summary>
//!
//! ```rust,no_run
//! use std::fs::File;
//!
//! use naan::prelude::*;
//!
//! fn copy_file_to_dir(dir: String, file: File) -> std::io::Result<()> {
//!   // ...
//!   # Ok(())
//! }
//!
//! fn main() {
//!   let dir = std::env::var("DEST_DIR").unwrap();
//!   let copy = copy_file_to_dir.curry().call(dir);
//!
//!   File::open("a.txt").bind1(copy.clone())
//!                      .bind1(|_| File::open("b.txt"))
//!                      .bind1(copy.clone())
//!                      .bind1(|_| File::open("c.txt"))
//!                      .bind1(copy);
//! }
//!
//! /*
//!   equivalent to:
//!   fn main() {
//!     let dir = std::env::var("DEST_DIR").unwrap();
//!
//!     copy_file_to_dir(dir.clone(), File::open("a.txt")?)?;
//!     copy_file_to_dir(dir.clone(), File::open("b.txt")?)?;
//!     copy_file_to_dir(dir, File::open("c.txt")?)?;
//!   }
//! */
//! ```
//! </details>
//! <details>
//! <summary>
//!
//! **EXAMPLE: lifting a function to accept Results (or Options)**
//! </summary>
//!
//! ```rust,no_run
//! use std::fs::File;
//!
//! use naan::prelude::*;
//!
//! fn append_contents(from: File, to: File) -> std::io::Result<()> {
//!   // ...
//!   # Ok(())
//! }
//!
//! fn main() -> std::io::Result<()> {
//!   Ok(append_contents.curry()).apply1(File::open("from.txt"))
//!                              .apply1(File::open("to.txt"))
//!                              .flatten()
//! }
//!
//! /*
//! equivalent to:
//! fn main() -> std::io::Result<()> {
//!   let from = File::open("from.txt")?;
//!   let to = File::open("to.txt")?;
//!   append_contents(from, to)
//! }
//! */
//! ```
//! </details>
//!
//! ### Currying - How it's done
//! [Top](#table-of-contents) &middot; [Up - Currying](#currying)
//!
//! naan introduces a few new function traits that add
//! ergonomics around currying and function composition;
//! `F1`, `F2` and `F3`. These traits extend the builtin function
//! traits `Fn` and `FnOnce` with methods that allow currying and function
//! composition.
//!
//! (note that each arity has a "callable multiple times"
//! version and a "callable at least once" version. The latter traits are
//! denoted with a suffix of `Once`)
//! <details>
//! <summary>
//!
//! **`F2` and `F2Once` Definitions**
//! </summary>
//!
//! ```rust,ignore
//! pub trait F2Once<A, B, C>: Sized {
//!   /// The concrete type that `curry` returns.
//!   type Curried;
//!
//!   /// Call the function
//!   fn call1(self, a: A, b: B) -> C;
//!
//!   /// Curry this function, transforming it from
//!   ///
//!   /// `fn(A, B) -> C`
//!   /// to
//!   /// `fn(A) -> fn(B) -> C`
//!   fn curry(self) -> Self::Curried;
//! }
//!
//! pub trait F2<A, B, C>: F2Once<A, B, C> {
//!   /// Call the function with all arguments
//!   fn call(&self, a: A, b: B) -> C;
//! }
//!
//! impl<F, A, B, C> F2<A, B, C> for F where F: Fn(A, B) -> C { /* <snip> */ }
//! impl<F, A, B, C> F2Once<A, B, C> for F where F: FnOnce(A, B) -> C { /* <snip> */ }
//! ```
//! </details>
//!
//! ## Function Composition
//! [Top](#table-of-contents) &middot; [Prev - Currying](#currying) &middot; [Next - Typeclasses](#typeclasses)
//! ### Composition - What it is
//! [Top](#table-of-contents) &middot; [Up - Function Composition](#function-composition)
//!
//! Function composition is the strategy of chaining functions sequentially by
//! automatically passing the output of one function to the input of another.
//!
//! This very powerful technique lets us concisely express programs in terms of
//! data that flows through pipes, rather than a sequence of time-bound statements:
//!
//! ```rust
//! use naan::prelude::*;
//!
//! struct Apple;
//! struct Orange;
//! struct Grape;
//! #[derive(Debug, PartialEq)]
//! struct Banana;
//!
//! fn apple_to_orange(a: Apple) -> Orange {
//!   Orange
//! }
//! fn orange_to_grape(o: Orange) -> Grape {
//!   Grape
//! }
//! fn grape_to_banana(g: Grape) -> Banana {
//!   Banana
//! }
//!
//! fn main() {
//!   let apple_to_banana = apple_to_orange.chain(orange_to_grape)
//!                                        .chain(grape_to_banana);
//!   assert_eq!(apple_to_banana.call(Apple), Banana)
//! }
//! ```
//!
//! ## Typeclasses
//! [Top](#table-of-contents) &middot; [Prev - Function Composition](#function-composition)
//!
//! Some of the most powerful & practical types in programming are locked behind
//! a feature that many languages choose not to implement in Higher-Kinded Types.
//!
//! Utilities like `map`, `unwrap_or`, and `and_then` are enormously useful tools
//! in day-to-day rust that allow us to conveniently skip a lot of hand-written control flow.
//! <details>
//! <summary>
//!
//! **Comparing `and_then` and `map` to their desugared equivalent**
//! </summary>
//!
//! ```rust
//! use std::io;
//!
//! fn network_fetch_name() -> io::Result<String> {
//!   Ok("harry".into())
//! }
//! fn network_send_message(msg: String) -> io::Result<()> {
//!   Ok(())
//! }
//! fn global_state_store_name(name: &str) -> io::Result<()> {
//!   Ok(())
//! }
//!
//! // Declarative
//! fn foo0() -> io::Result<()> {
//!   network_fetch_name().and_then(|name| {
//!                         global_state_store_name(&name)?;
//!                         Ok(name)
//!                       })
//!                       .map(|name| format!("hello, {name}!"))
//!                       .and_then(network_send_message)
//! }
//!
//! // Idiomatic
//! fn foo1() -> io::Result<()> {
//!   let name = network_fetch_name()?;
//!   global_state_store_name(&name)?;
//!   network_send_message(format!("hello, {name}!"))
//! }
//!
//! // Imperative
//! fn foo2() -> io::Result<()> {
//!   let name = match network_fetch_name() {
//!     | Ok(name) => name,
//!     | Err(e) => return Err(e),
//!   };
//!
//!   match global_state_store_name(&name) {
//!     | Err(e) => return Err(e),
//!     | _ => (),
//!   };
//!
//!   network_send_message(format!("hello, {name}!"))
//! }
//! ```
//!
//! A couple notes:
//!  - the "idiomatic" implementation is the most brief and scannable
//!  - the idiomatic and imperative implementations are more difficult to refactor due to scope sharing; imperative statements depend on the previous statements in order to be meaningful, while declarative expressions have little to no coupling to state or scope.
//! </details>
//!
//! The value proposition of these typeclasses is that they allow us to think of types like Result, Option and Iterators as being abstract **containers**.
//!
//! We don't need to know much about their internals to know how to use them effectively and productively.
//!
//! This extremely simple but powerful metaphor allows us to solve some very complex problems with data structures that have
//! a shared set of interfaces.
//!
//! ### Semigroup and Monoid
//! #### Combining two values of a concrete type
//! [Top](#table-of-contents) &middot; [Up - Typeclasses](#typeclasses)
//!
//! `Semigroup` is the name we give types that support some associative combination
//! of two values (`a.append(b)`).
//!
//! _🔎 Associative means `a.append( b.append(c) )` must equal `a.append(b).append(c)`._
//!
//! Examples:
//!  * integer addition
//!    * `1 * (2 * 3) == (1 * 2) * 3`
//!  * integer multiplication
//!    * `1 + (2 + 3) == (1 + 2) + 3`
//!  * string concatenation
//!    * `"a".append("b".append("c")) == "a".append("b").append("c") == "abc"`
//!  * `Vec<T>` concatenation
//!    * `vec![1].append(vec![2].append(vec![3])) == vec![1, 2, 3]`
//!  * `Option<T>` (only when `T` implements `Semigroup`)
//!    * `Some("a").append(Some("b")) == Some("ab")`
//!  * `Result<T, _>` (only when `T` implements `Semigroup`)
//!    * `Ok("a").append(Ok("b")) == Ok("ab")`
//!
//! `Monoid` extends `Semigroup` with an "identity" or "empty" value, that will do nothing when appended to another.
//!
//! Examples:
//!  * 0 in integer addition
//!    * `0 + 1 == 1`
//!  * 1 in integer multiplication
//!    * `1 * 2 == 2`
//!  * empty string
//!    * `String::identity() == ""`
//!    * `"".append("a") == "a"`
//!  * `Vec<T>`
//!    * `Vec::<u32>::identity() == vec![]`
//!    * `vec![].append(vec![1, 2]) == vec![1, 2]`
//!
//! These are defined as:
//! ```rust
//! pub trait Semigroup {
//!   // 🔎 Note that this can be **any** combination of 2 selves,
//!   // not just concatenation.
//!   //
//!   // The only rule is that implementations have to be associative.
//!   fn append(self, b: Self) -> Self;
//! }
//!
//! pub trait Monoid: Semigroup {
//!   fn identity() -> Self;
//! }
//! ```
//!
//! ### Alt and Plus
//! #### Combining two values of a generic type
//! [Top](#table-of-contents) &middot; [Up - Typeclasses](#typeclasses)
//!
//! `Alt` is the name we give to generic types that support an associative operation
//! on 2 values of the same type (`a.alt(b)`).
//!
//! _🔎 `Alt` is identical to `Semigroup`, but the implementor is generic._
//!
//! _🔎 `alt` is identical to `Result::or` and `Option::or`._
//!
//! Examples:
//!  * `Vec<T>`
//!    * `vec![1].alt(vec![2]) == vec![1, 2]`
//!  * `Result<T, _>`
//!    * `Ok(1).alt(Err(_)) == Ok(1)`
//!  * `Option<T>`
//!    * `None.alt(Some(1)) == Some(1)`
//!
//! `Plus` extends `Alt` with an "identity" or "empty" value, that will do nothing when `alt`ed to another.
//!
//! _🔎 `Plus` is identical to `Monoid`, but the implementor is generic._
//!
//! Examples:
//!  * `Vec<T>` (`Vec::empty() == vec![]`)
//!  * `Option<T>` (`Option::empty() == None`)
//!
//! These are defined as:
//! ```rust,ignore
//! // 🔎 `Self` must be generic over some type `A`.
//! pub trait Alt<F, A>
//!   where Self: Functor<F, A>,
//!         F: HKT1<T<A> = Self>
//! {
//!   fn alt(self, b: Self) -> Self;
//! }
//!
//! pub trait Plus<F, A>
//!   where Self: Alt<F, A>,
//!         F: HKT1<T<A> = Self>
//! {
//!   fn empty() -> F::T<A>;
//! }
//! ```
//!
//! ### Functor
//! #### using a function to transform values within a container
//! [Top](#table-of-contents) &middot; [Up - Typeclasses](#typeclasses)
//!
//! `Functor` is the name we give to types that allow us to take a function from `A -> B`
//! and effectively "penetrate" a type and apply it to some `F<A>`, yielding `F<B>` (`a.fmap(a_to_b)`).
//!
//! _🔎 This is identical to `Result::map` and `Option::map`._
//!
//! _🔎 There is a separate trait `FunctorOnce` which extends `Functor` to know that the mapping function will only be called once._
//!
//! `Functor` is defined as:
//! ```rust,ignore
//! // 🔎 `Self` must be generic over some type `A`
//! pub trait Functor<F, A> where F: HKT1<T<A> = Self>
//! {
//!   // 🔎 given a function `A -> B`,
//!   // apply it to the values of type `A` in `Self<A>` (if any),
//!   // yielding `Self<B>`
//!   fn fmap<AB, B>(self, f: AB) -> F::T<B> where AB: F1<A, B>;
//! }
//! ```
//!
//! ### Bifunctor
//! #### mapping types with 2 generic parameters
//! [Top](#table-of-contents) &middot; [Up - Typeclasses](#typeclasses)
//!
//! `Bifunctor` is the name we give to types that have 2 generic parameters,
//! both of which can be `map`ped.
//!
//! `Bifunctor` requires:
//! * `bimap`
//!   * transforms `T<A, B>` to `T<C, D>`, given a function `A -> C` and another `B -> D`.
//!
//! `Bifunctor` provides 2 methods:
//! * `lmap` (map left type)
//!   * `T<A, B> -> T<C, B>`
//! * `rmap` (map right type)
//!   * `T<A, B> -> T<A, D>`
//!
//! _🔎 There is a separate trait `BifunctorOnce` which extends `Bifunctor` to know that the mapping functions will only be called once._
//!
//! `Bifunctor` is defined as:
//! ```rust,ignore
//! pub trait Bifunctor<F, A, B>
//!   where F: HKT2<T<A, B> = Self>
//! {
//!   /// 🔎 In Result, this combines `map` and `map_err` into one step.
//!   fn bimap<A2, B2, FA, FB>(self, fa: FA, fb: FB) -> F::T<A2, B2>
//!     where FA: F1<A, A2>,
//!           FB: F1<B, B2>;
//!
//!   /// 🔎 In Result, this maps the "Ok" type and is equivalent to `map`.
//!   fn lmap<A2, FA>(self, fa: FA) -> F::T<A2, B>
//!     where Self: Sized,
//!           FA: F1<A, A2>
//!   {
//!     self.bimap(fa, |b| b)
//!   }
//!
//!   /// 🔎 In Result, this maps the "Error" type and is equivalent to `map_err`.
//!   fn rmap<B2, FB>(self, fb: FB) -> F::T<A, B2>
//!     where Self: Sized,
//!           FB: F1<B, B2>
//!   {
//!     self.bimap(|a| a, fb)
//!   }
//! }
//! ```
//!
//! ## Foldable
//! ### Unwrapping & transforming entire data structures
//! [Top](#table-of-contents) &middot; [Up - Typeclasses](#typeclasses)
//!
//! Types that are `Foldable` can be unwrapped and collected into a new value.
//! Fold is a powerful and complex operation because of how general it is; if something
//! is foldable, it can be folded into practically anything.
//!
//! _🔎 There is a separate trait `FoldableOnce` which extends `Foldable` to know that the folding function can only be called once._
//!
//! Folding can be thought of as a series of steps:
//! 1. Given some foldable `F<T>`, and you want a `R`
//!    * _I have a `Vec<Option<u32>>` and I want to sum the u32s that are Some, and discard the Nones_
//! 1. Start with some initial value of type `R`
//!    * _I want a sum of u32s, so I'll start with zero._
//! 1. Write a function of type `Fn(R, T) -> R`. This will be called with the initial `R` along with a value of type `T` from within `F<T>`. The function will be called repeatedly with the `R` returned by the last call until there are no more `T`s in `F<T>`.
//!    * `|sum_so_far, option_of_u32| sum_so_far + option_of_u32.unwrap_or(0)`
//! 1. This function will be called for every `T` contained in `F<T>`, collecting them into the initial value `R` you provided.
//!    * `vec![Some(1), None, Some(2), Some(4)].fold(|sum, n| sum + n.unwrap_or(0)) == 7`
//!
//! <details>
//! <summary>
//!
//! **Examples**</summary>
//!
//! ### Result to Option
//! ```rust
//! use naan::prelude::*;
//!
//! fn passing() -> Result<u32, ()> {
//!   Ok(0)
//! }
//!
//! fn failing() -> Result<u32, ()> {
//!   Err(())
//! }
//!
//! assert_eq!(match passing() {
//!              | Ok(t) => Some(t),
//!              | _ => None,
//!            },
//!            Some(0));
//!
//! assert_eq!(passing().fold1(|_, t| Some(t), None), Some(0));
//! assert_eq!(failing().fold1(|_, t| Some(t), None), None);
//! ```
//!
//! ### Collapse a Vec
//! ```rust
//! use naan::prelude::*;
//!
//! assert_eq!(vec![1, 2, 3].foldl(|sum, n| sum + n, 0), 6);
//! assert_eq!(vec![2, 4, 6].foldl(|sum, n| sum * n, 1), 48);
//! assert_eq!(vec!["a", "b", "c"].foldl(|acc, cur| format!("{acc}{cur}"), String::from("")),
//!            "abc");
//! ```
//! </details>
//!
//! `Foldable` is defined as:
//! ```rust,ignore
//! pub trait Foldable<F, A> where F: HKT1<T<A> = Self>
//! {
//!   /// Fold the data structure from left -> right
//!   fn foldl<B, BAB>(self, f: BAB, b: B) -> B
//!     where BAB: F2<B, A, B>;
//!
//!   /// Fold the data structure from right -> left
//!   fn foldr<B, ABB>(self, f: ABB, b: B) -> B
//!     where ABB: F2<A, B, B>;
//!
//!   /// Fold the data structure from left -> right
//!   fn foldl_ref<'a, B, BAB>(&'a self, f: BAB, b: B) -> B
//!     where BAB: F2<B, &'a A, B>,
//!           A: 'a;
//!
//!   /// Fold the data structure from right -> left
//!   fn foldr_ref<'a, B, ABB>(&'a self, f: ABB, b: B) -> B
//!     where ABB: F2<&'a A, B, B>,
//!           A: 'a;
//!
//! }
//! ```
//!
//! 🔎 `Foldable` provides many additional methods derived from the required methods above. Full documentation can be found [here](https://docs.rs/naan/latest/naan/fold/trait.Foldable.html).
//! ```rust
//! use naan::prelude::*;
//!
//! fn is_odd(n: &usize) -> bool {
//!   n % 2 == 1
//! }
//!
//! fn is_even(n: &usize) -> bool {
//!   n % 2 == 0
//! }
//!
//! assert_eq!(Some("abc".to_string()).fold(), "abc".to_string());
//! assert_eq!(Option::<String>::None.fold(), "");
//!
//! let abc = vec!["a", "b", "c"].fmap(String::from);
//!
//! assert_eq!(abc.clone().fold(), "abc");
//! assert_eq!(abc.clone().intercalate(", ".into()), "a, b, c".to_string());
//! assert_eq!(vec![2usize, 4, 8].any(is_odd), false);
//! assert_eq!(vec![2usize, 4, 8].all(is_even), true);
//! ```
//!
//! ## Lazy IO

// docs
#![doc(html_root_url = "https://docs.rs/naan/0.1.32")]
#![cfg_attr(any(docsrs, feature = "docs"), feature(doc_cfg))]
// -
// deny
#![warn(missing_docs)]
#![cfg_attr(not(test), deny(unsafe_code))]
// -
// warnings
#![cfg_attr(not(test), warn(unreachable_pub))]
// -
// shut up
#![allow(clippy::self_named_constructors)]
#![allow(clippy::type_complexity)]
// -
// features
#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(feature = "alloc")]
extern crate alloc as std_alloc;

/// Alt, Plus
pub mod alt;

/// Discard
pub mod discard;

/// Apply, Applicative
pub mod apply;

/// Bifunctor
pub mod bifunctor;

/// Monad
pub mod monad;

/// Foldable
pub mod fold;

/// Functions
pub mod fun;

/// Functor
pub mod functor;

/// Implementors
pub mod impls;

/// Lazy managed effects
pub mod io;

/// Semigroup, Monoid
pub mod semigroup;

/// Traversable
pub mod traverse;

pub(crate) enum Never {}

/// Re-exports of HKT markers for types that have provided implementations
pub mod hkt {
  #[cfg(feature = "alloc")]
  pub use crate::impls::btree_map::hkt::{BTreeMap, BTreeMapValues};
  #[cfg(feature = "std")]
  pub use crate::impls::hash_map::hkt::{HashMap, HashMapValues};
  pub use crate::impls::identity::hkt::Id;
  pub use crate::impls::option::hkt::Option;
  pub use crate::impls::result::hkt::{Result, ResultOk};
  #[cfg(feature = "tinyvec")]
  pub use crate::impls::tinyvec::hkt::ArrayVec;
  #[cfg(feature = "alloc")]
  pub use crate::impls::vec::hkt::Vec;

  /// std
  #[cfg(feature = "std")]
  pub mod std {
    /// std::io
    pub mod io {
      /// Result pinned to [`std::io::Error`]
      pub type Result = crate::impls::result::hkt::ResultOk<std::io::Error>;
    }
  }
}

/// Glob import that provides all of the `naan` typeclasses
pub mod prelude {
  pub use crate::alt::*;
  pub use crate::apply::*;
  pub use crate::bifunctor::*;
  pub use crate::discard::*;
  pub use crate::fold::*;
  pub use crate::fun::compose::*;
  pub use crate::fun::curry2::*;
  pub use crate::fun::curry3::*;
  pub use crate::fun::*;
  pub use crate::functor::*;
  pub use crate::impls::identity::*;
  pub use crate::impls::result::ResultExt;
  pub use crate::io::*;
  pub use crate::monad::*;
  pub use crate::semigroup::*;
  pub use crate::traverse::*;
  pub use crate::{deriving, hkt, Equiv, HKT1, HKT2};
}

/// An `Equiv` type is one that is conceptually the same as some
/// different type.
///
/// This is used to allow types to implement typeclasses for other types
/// in a still strict way. For examples see [`functor::FunctorSurrogate`], [`monad::MonadSurrogate`]
///
/// # Example - Iterators
/// In the following example, `iter` `map` and `filter` are all
/// conceptually "an iterator over `usize`"
/// ```
/// use std::iter::{Filter, Map};
///
/// let vec: Vec<usize> = vec![1, 2, 3, 4, 5];
/// let iter: std::vec::IntoIter<usize> = vec.into_iter();
/// let map: Map<std::vec::IntoIter<usize>, _> = iter.map(|n| n + 1);
/// let filter: Filter<Map<std::vec::IntoIter<usize>, _>, _> = map.filter(|n| n % 2 == 0);
/// ```
/// this would imply:
/// ```ignore
/// <std::vec::IntoIter<usize> as Equiv>::To == std::vec::IntoIter<usize>
/// <Map<std::vec::IntoIter<usize>, _> as Equiv>::To == std::vec::IntoIter<usize>
/// <Filter<Map<std::vec::IntoIter<usize>, _>, _> as Equiv>::To == std::vec::IntoIter<usize>
/// ```
///
/// Other examples:
/// * `Result<A, Infallible>` is `Equiv::To` `Result<A, !>` (and vice versa)
/// * `IO<Lazy>` is `Equiv::To` `IO<Lazy::T>` (`IO<Suspend<_, usize>>` == `IO<usize>`)
pub trait Equiv {
  /// The target that `Self` is conceptually equivalent to
  type To;
}

/// A marker that points to a type with 1 generic
/// parameter.
///
/// ```
/// use naan::prelude::*;
///
/// enum Maybe<A> {
///   Just(A),
///   Nothing,
/// }
///
/// struct MaybeHKT;
///
/// impl HKT1 for MaybeHKT {
///   type T<A> = Maybe<A>;
/// }
/// ```
pub trait HKT1 {
  /// The generic type
  type T<A>;
}

/// A marker that points to a type with 2 generic
/// parameters.
///
/// ```
/// use naan::prelude::*;
///
/// enum Either<A, B> {
///   Left(A),
///   Right(B),
/// }
///
/// struct EitherHKT;
///
/// impl HKT2 for EitherHKT {
///   type T<A, B> = Either<A, B>;
/// }
/// ```
pub trait HKT2 {
  /// The generic type
  type T<A, B>;
}

/// Helper macro that allows deriving various typeclass instances from
/// other traits or typeclasses.
///
/// e.g. Functor can use the implementation for FunctorOnce, Plus can use Default.
///
/// ```
/// use naan::prelude::*;
///
/// #[derive(Default)]
/// pub struct Foo(String);
///
/// impl Semigroup for Foo {
///   fn append(self, other: Self) -> Self {
///     Foo(self.0.append(other.0))
///   }
/// }
///
/// deriving!(impl Monoid for Foo {..Default});
/// ```
#[macro_export]
macro_rules! deriving {
  (impl$(<$($vars:ident),+>)? Functor<$hkt:ty, $a:ident> for $t:ty {..FunctorOnce}) => {
    impl<$a, $($($vars),+)?> Functor<$hkt, $a> for $t {
      fn fmap<AB, B>(self, f: AB) -> <$hkt as HKT1>::T<B> where AB: F1<A, Ret = B> {
        self.fmap1(f)
      }
    }
  };
  (impl$(<$($vars:ident),+>)? Bifunctor<$hkt:ty, $a:ident, $b:ident> for $t:ty {..BifunctorOnce}) => {
    impl<$a, $b, $($($vars),+)?> Bifunctor<$hkt, $a, $b> for $t {
      fn bimap<AB, BB, FA, FB>(self, fa: FA, fb: FB) -> <$hkt as HKT2>::T<AB, BB> where FA: F1<$a, Ret = AB>, FB: F1<$b, Ret = BB> {
        self.bimap1(fa, fb)
      }
    }
  };
  (impl$(<$($vars:ident),+>)? Apply<$hkt:ty, $ab:ident> for $t:ty {..ApplyOnce}) => {
    impl<$ab, $($($vars),+)?> Apply<$hkt, $ab> for $t {
  fn apply_with<A, B, Cloner>(self, a: <$hkt as HKT1>::T<A>, _: Cloner) -> <$hkt as HKT1>::T<B>
      where AB: F1<A, Ret = B>,
            Cloner: for<'a> F1<&'a A, Ret = A>
            {
        self.apply1(a)
      }
    }
  };
  (impl$(<$($vars:ident),+>)? Plus<$hkt:ty, $a:ident> for $t:ty {..Default}) => {
    impl<$a, $($($vars),+)?> Plus<$hkt, $a> for $t {
      fn empty() -> <$hkt as HKT1>::T<$a> {
        Default::default()
      }
    }
  };
  (impl$(<$($vars:ident),+>)? Semigroup for $t:ty {..Alt}) => {
    impl$(<$($vars),+>)? Semigroup for $t {
      fn append(self, other: Self) -> Self {
        self.alt(other)
      }
    }
  };
  (impl$(<$($vars:ident),+>)? Monoid for $t:ty {..Default}) => {
    impl$(<$($vars),+>)? Monoid for $t {
      fn identity() -> Self {
        Default::default()
      }
    }
  };
  (impl$(<$($vars:ident),+>)? FoldableIndexed<$hkt:ty, $idx:ident, $a:ident> for $t:ty {..FoldableOnceIndexed}) => {
    impl<$a, $($($vars),+)?> FoldableIndexed<$hkt, $idx, $a> for $t {
      fn foldl_idx<B, BAB>(self, f: BAB, b: B) -> B
      where BAB: F3<B, $idx, A, Ret = B> {
        self.fold1_idx(f, b)
      }

      fn foldr_idx<B, ABB>(self, f: ABB, b: B) -> B
      where ABB: F3<$idx, A, B, Ret = B> {
        self.fold1(|x, a, b| f.call(b, x, a), b)
      }

      fn foldl_ref_idx<'a, B, BAB>(&'a self, f: BAB, b: B) -> B
      where BAB: F3<B, &'a $idx, &'a A, Ret = B>, A: 'a, $idx: 'a {
        self.fold1_ref(f, b)
      }

      fn foldr_ref_idx<'a, B, ABB>(&'a self, f: ABB, b: B) -> B
        where ABB: F3<&'a $idx, &'a A, B, Ret = B>, A: 'a, $idx: 'a {
        self.fold1_ref(|k, a, b| f.call(b, k, a), b)
      }
    }
  };
  (impl$(<$($vars:ident),+>)? FoldableOnce<$hkt:ty, $a:ident> for $t:ty {..FoldableOnceIndexed}) => {
    impl<$a, $($($vars),+)?> FoldableOnce<$hkt, $a> for $t {
      fn fold1<B, BAB>(self, f: BAB, b: B) -> B
      where BAB: F2Once<B, A, Ret = B> {
        self.fold1_idx(|b, _, a| f.call(b, a), b)
      }

      fn fold1_ref<'a, B, ABB>(&'a self, f: ABB, b: B) -> B
        where ABB: F2Once<&'a A, B, Ret = B>, A: 'a {
        self.fold1_idx_ref(|b, _, a| f.call(b, a), b)
      }
    }
  };
  (impl$(<$($vars:ident),+>)? Foldable<$hkt:ty, $a:ident> for $t:ty {..FoldableOnce}) => {
    impl<$a, $($($vars),+)?> Foldable<$hkt, $a> for $t {
      fn foldl<B, BAB>(self, f: BAB, b: B) -> B
      where BAB: F2<B, A, Ret = B> {
        self.fold1(f, b)
      }

      fn foldr<B, ABB>(self, f: ABB, b: B) -> B
      where ABB: F2<A, B, Ret = B> {
        self.fold1(|a, b| f.call(b, a), b)
      }

      fn foldl_ref<'a, B, BAB>(&'a self, f: BAB, b: B) -> B
      where BAB: F2<B, &'a A, Ret = B>, A: 'a {
        self.fold1_ref(f, b)
      }

      fn foldr_ref<'a, B, ABB>(&'a self, f: ABB, b: B) -> B
        where ABB: F2<&'a A, B, Ret = B>, A: 'a {
        self.fold1_ref(|a, b| f.call(b, a), b)
      }
    }
  };
  (impl$(<$($vars:ident),+>)? Foldable<$hkt:ty, $a:ident> for $t:ty {..FoldableIndexed}) => {
    impl<$a, $($($vars),+)?> Foldable<$hkt, $a> for $t {
      fn foldl<B, BAB>(self, f: BAB, b: B) -> B
      where BAB: F2<B, A, Ret = B> {
        self.foldl_idx(|b, _, a| f.call(b, a), b)
      }

      fn foldr<B, ABB>(self, f: ABB, b: B) -> B
      where ABB: F2<A, B, Ret = B> {
        self.foldr_idx(|_, a, b| f.call(a, b), b)
      }

      fn foldl_ref<'a, B, BAB>(&'a self, f: BAB, b: B) -> B
      where BAB: F2<B, &'a A, Ret = B>, A: 'a {
        self.foldl_idx_ref(|b, _, a| f.call(b, a), b)
      }

      fn foldr_ref<'a, B, ABB>(&'a self, f: ABB, b: B) -> B
        where ABB: F2<&'a A, B, Ret = B>, A: 'a {
        self.foldr_idx_ref(|_, a, b| f.call(a, b), b)
      }
    }
  };
  (impl$(<$($vars:ident),+>)? Traversable<$hkt:ty, $a:ident, $b:ident, $tf:ty> for $t:ty {..TraversableOnce}) => {
    impl<$a, $b, $($($vars),+)?> Traversable<$hkt, $a, $b, $tf> for $t {
  fn traversem1<Ap, AtoApOfB>(self, f: AtoApOfB) -> Ap::T<<$hkt as HKT1>::T<B>>
    where Ap: HKT1,
      Ap::T<B>: Applicative<Ap, B> + ApplyOnce<Ap, B>,
      Ap::T<$tf>: Applicative<Ap, $tf> + ApplyOnce<Ap, $tf>,
      Ap::T<<$hkt as HKT1>::T<B>>: Applicative<Ap, <$hkt as HKT1>::T<B>> + ApplyOnce<Ap, <$hkt as HKT1>::T<B>>,
      AtoApOfB: F1<A, Ret = Ap::T<B>> {
        self.traverse11::<Ap, AtoApOfB>(f)
      }

  fn traversemm<Ap, AtoApOfB>(self, f: AtoApOfB) -> Ap::T<<$hkt as HKT1>::T<B>>
    where Ap: HKT1,
      Ap::T<B>: Applicative<Ap, B>,
      Ap::T<$tf>: Applicative<Ap, $tf>,
      Ap::T<<$hkt as HKT1>::T<B>>: Applicative<Ap, <$hkt as HKT1>::T<B>>,
      AtoApOfB: F1<A, Ret = Ap::T<B>>
       {
        self.traverse1m::<Ap, AtoApOfB>(f)
      }
    }
  };
  (impl$(<$($vars:ident),+>)? Monad<$hkt:ty, $a:ident> for $t:ty {..MonadOnce}) => {
    impl<$a, $($($vars),+)?> Monad<$hkt, $a> for $t {
      fn bind<B, AMB>(self, f: AMB) -> <$hkt as HKT1>::T<B> where AMB: F1<$a, Ret = <$hkt as HKT1>::T<B>> {
        self.bind1(f)
      }
    }
  };
}