1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
//! A simple disassembler for [`MOSIS`], a pen and paper instruction format for teaching and
//! learning reverse engineering.
//!
//! [`MOSIS`]: https://github.com/JHUAPL/Beat-the-Machine

use std::convert::{TryFrom, TryInto};
use thiserror::Error;

/// `MOSIS` general purpose registers.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[repr(u8)]
pub enum Register {
    R0,
    R1,
    R2,
    R3,
    R4,
    R5,
    R6,
    R7,
    R8,
    R9,
    Ra,
    Rb,
    Rc,
    Rd,
    Re,
    Rf,
}

impl TryFrom<u16> for Register {
    type Error = MOSISError;
    fn try_from(value: u16) -> Result<Self, Self::Error> {
        use Register::*;
        Ok(match value {
            0 => R0,
            1 => R1,
            2 => R2,
            3 => R3,
            4 => R4,
            5 => R5,
            6 => R6,
            7 => R7,
            8 => R8,
            9 => R9,
            10 => Ra,
            11 => Rb,
            12 => Rc,
            13 => Rd,
            14 => Re,
            15 => Rf,
            _ => return Err(MOSISError::InvalidRegister),
        })
    }
}

/// Type alias to `u16`
///
/// Addresses are used as [`Jmp`][`Instruction::Jmp`] and [`Call`][`Instruction::Call`] targets.
/// These are 16-bit aligned, so addresses are effectively a target index to jump to, within an
/// array of instructions.
pub type Address = u16;

/// `MOSIS` instruction type.
///
/// All instructions are 16-bits. The first 4 bits represent the opcode, and the remaining 12 bits
/// are used in an instruction-dependent way. Instructions have between 0 and 3 parameters. Most of
/// the instruction names are fixed, except the conditional jump instruction (Jcc).
#[derive(Debug, PartialEq, Eq)]
pub enum Instruction {
    /// Copy the contents of the `src` register to the `dst` register.
    Mov { dst: Register, src: Register },

    /// Move a number encoded in the instruction (`imm`)into the `dst` register.
    Movi { dst: Register, imm: u8 },

    /// Add two registers `x` and `y`, and store the result in the `dst` register.
    Add { dst: Register, x: Register, y: Register },

    /// Subtract register `y` from register `x`, (`x - y`), and store the result in the `dst`
    /// register.
    Sub { dst: Register, x: Register, y: Register },

    /// Compare two registers (using [`Sub`][`Instruction::Sub`]) and set the flags register. Used by
    /// [`Jcc`][`Instruction::Jcc`].
    Cmp { x: Register, y: Register },

    /// Jump if a certain condition is true (based on the result of a [`Cmp`][`Instruction::Cmp`]).
    ///
    /// The conditional jump instruction’s name can be rendered differently depending on the
    /// condition (e.g. it becomes `JLT` when checking for "less than" or `JNE` when checking for
    /// "not equal").
    ///
    /// If condition is true, jump to the offset; otherwise, execute the next instruction. The
    /// offset is an instruction count, positive or negative based on the sign bit. Offset is from
    /// the _beginning_ of the `Jcc` instruction.
    Jcc { cond: Condition, offset: i8 },

    /// Jump to a fixed [address][`Address`].
    Jmp { address: Address },

    /// Call a function at a fixed [address][`Address`].
    ///
    /// More specifically, push the address of the following instruction onto the call stack, then
    /// [`Jmp`][`Instruction::Jmp`] to the address specified.
    Call { address: Address },

    /// Return from a function.
    ///
    /// More specifically, pop the address off the call stack, and [`Jmp`][`Instruction::Jmp`]
    /// there.
    Ret,

    /// No operation. Do nothing.
    Nop,

    /// Read from external memory or device and store in `dst` register.
    In { dst: Register },

    /// Write contents of `src` register to external memory or device.
    Out { src: Register },

    /// Multiply two registers `x` and `y` and store the result in the `dst` register.
    Mul { dst: Register, x: Register, y: Register },
}

/// Condition codes for the [conditional jump][`Instruction::Jcc`] instruction.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[repr(u8)]
pub enum Condition {
    Equal,
    LessThan,
    GreaterThan,
    LessThanOrEqual,
    GreaterThanOrEqual,
    NotEqual,
}

/// Possible errors that occur when disassembling `u16` to [`Instruction`].
#[derive(Debug, PartialEq, Eq, Error)]
pub enum MOSISError {
    #[error("invalid opcode")]
    InvalidOpcode,
    #[error("invalid register")]
    InvalidRegister,
    #[error("invalid condition")]
    InvalidCondition,
}

impl Instruction {
    /// Assemble an instruction to `u16`.
    pub fn assemble(&self) -> u16 {
        use Instruction::*;
        let (a, b, c, d) = match *self {
            Mov { dst, src } => (0, 0, dst as u16, src as u16),
            Movi { dst, imm } => (1, dst as u16, 0, imm as u16),
            Add { dst, x, y } => (2, dst as u16, x as u16, y as u16),
            Sub { dst, x, y } => (3, dst as u16, x as u16, y as u16),
            Cmp { x, y } => (4, 0, x as u16, y as u16),
            Jcc { cond, offset } => {
                let sign = if offset.is_negative() { 1 } else { 0 };
                let val = sign << 7 | offset.abs() as u16;
                (5, cond as u16, 0, val)
            }
            Jmp { address } => (6, (address >> 8) as u16, 0, address as u16),
            Call { address } => (7, (address >> 8) as u16, 0, address as u16),
            Ret => (8, 0, 0, 0),
            Nop => (9, 0, 0, 0),
            In { dst } => (10, 0, 0, dst as u16),
            Out { src } => (11, 0, 0, src as u16),
            Mul { dst, x, y } => (12, dst as u16, x as u16, y as u16),
        };
        a << 12 | (b & 0xf) << 8 | c << 4 | d
    }

    /// All MOSIS instructions are 16 bits, but endianness is not specified in the documentation,
    /// so disassembly simply takes a `u16` to skirt around this ambiguity.
    pub fn disassemble(inst: u16) -> Result<Self, MOSISError> {
        // opcode is always first nibble
        let opcode = (inst & 0xf000) >> 12;

        // next nibbles are often useful
        let a = (inst & 0x0f00) >> 8;
        let b = (inst & 0x00f0) >> 4;
        let c = inst & 0x000f;

        Ok(match opcode {
            0b0000 => Self::Mov { dst: b.try_into()?, src: c.try_into()? },
            0b0001 => Self::Movi {
                dst: a.try_into()?,
                imm: (inst & 0x00ff) as u8,
            },
            0b0010 => Self::Add {
                dst: a.try_into()?,
                x: b.try_into()?,
                y: c.try_into()?,
            },
            0b0011 => Self::Sub {
                dst: a.try_into()?,
                x: b.try_into()?,
                y: c.try_into()?,
            },
            0b0100 => Self::Cmp { x: b.try_into()?, y: c.try_into()? },
            0b0101 => {
                let mut offset = (inst & 0x007f) as u8 as i8;
                if inst & 0x0080 != 0 {
                    offset = -offset;
                }
                Self::Jcc {
                    cond: match a {
                        0b0000 => Condition::Equal,
                        0b0001 => Condition::LessThan,
                        0b0010 => Condition::GreaterThan,
                        0b0011 => Condition::LessThanOrEqual,
                        0b0100 => Condition::GreaterThanOrEqual,
                        0b0101 => Condition::NotEqual,
                        _ => return Err(MOSISError::InvalidCondition),
                    },
                    offset,
                }
            }
            0b0110 => Self::Jmp { address: inst & 0x0fff },
            0b0111 => Self::Call { address: inst & 0x0fff },
            0b1000 => Self::Ret,
            0b1001 => Self::Nop,
            0b1010 => Self::In { dst: c.try_into()? },
            0b1011 => Self::Out { src: c.try_into()? },
            0b1100 => Self::Mul {
                dst: a.try_into()?,
                x: b.try_into()?,
                y: c.try_into()?,
            },
            _ => return Err(MOSISError::InvalidOpcode),
        })
    }
}

/// Iterates over a slice of bytes, performing a linear sweep disassembly to MOSIS
/// [`Instruction`]s.
///
/// Iterate over a byte slice, disassembling as big endian `u16`s, yielding [`Instruction`]s or
/// [`MOSISError`]s when disassembly fails.
///
/// # Examples
///
/// ```
/// use mosis::{linear_sweep, Instruction::*, Register::*};
///
/// let bytes = &[0x23, 0x12, 0x2a, 0x34, 0x3a, 0x98, 0x3f, 0xed];
/// let mut x = linear_sweep(bytes);
///
/// assert_eq!(x.next(), Some(Ok(Add { dst: R3, x: R1, y: R2 })));
/// assert_eq!(x.next(), Some(Ok(Add { dst: Ra, x: R3, y: R4 })));
/// assert_eq!(x.next(), Some(Ok(Sub { dst: Ra, x: R9, y: R8 })));
/// assert_eq!(x.next(), Some(Ok(Sub { dst: Rf, x: Re, y: Rd })));
/// assert_eq!(x.next(), None);
/// ```
///
/// ```
/// use mosis::linear_sweep;
///
/// # let bytes = &[0x23, 0x12, 0x2a, 0x34, 0x3a, 0x98, 0x3f, 0xed];
/// for instruction in linear_sweep(bytes) {
///     println!("{}", instruction.unwrap());
/// }
/// ```
pub fn linear_sweep<'a>(
    bytes: &'a [u8],
) -> Box<dyn Iterator<Item = Result<Instruction, MOSISError>> + 'a> {
    let iter = bytes
        // take two bytes at a time
        .chunks_exact(2)
        // assume instructions are decoded big endian
        .map(|b| u16::from_be_bytes([b[0], b[1]]))
        // map `u16`s into `Instruction`s
        .map(|mc| Instruction::disassemble(mc));
    Box::new(iter)
}

impl TryFrom<u16> for Instruction {
    type Error = MOSISError;
    fn try_from(value: u16) -> Result<Self, Self::Error> {
        Instruction::disassemble(value)
    }
}

impl std::fmt::Display for Register {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "R{}", *self as u8)
    }
}

impl std::fmt::Display for Instruction {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        macro_rules! x {
            ($op:tt) => {
                write!(f, "{:<4}", stringify!($op))
            };
            ($op:tt,$a:expr) => {
                write!(f, "{:<4} {}", stringify!($op), $a)
            };
            ($op:tt,$a:expr,$b:expr) => {
                {
                    let a = format!("{},", $a);
                    write!(f, "{:<4} {:<4} {}", stringify!($op), a, $b)
                }
            };
            ($op:tt,$a:expr,$b:expr,$c:expr) => {
                {
                    let a = format!("{},", $a);
                    let b = format!("{},", $b);
                    write!(f, "{:<4} {:<4} {:<4} {}", stringify!($op), a, b, $c)
                }
            };
        }

        use Condition::*;
        use Instruction::*;

        match *self {
            Mov { dst, src } => x!(MOV, dst, src),
            Movi { dst, imm } => x!(MOVI, dst, imm),
            Add { dst, x, y } => x!(ADD, dst, x, y),
            Sub { dst, x, y } => x!(SUB, dst, x, y),
            Cmp { x, y } => x!(CMP, x, y),
            Jcc { cond, offset } => match cond {
                Equal => x!(JEQ, offset),
                LessThan => x!(JLT, offset),
                GreaterThan => x!(JGT, offset),
                LessThanOrEqual => x!(JLTE, offset),
                GreaterThanOrEqual => x!(JGTE, offset),
                NotEqual => x!(JNE, offset),
            },
            Jmp { address } => x!(JMP, address),
            Call { address } => x!(CALL, address),
            Ret => x!(RET),
            Nop => x!(NOP),
            In { dst } => x!(IN, dst),
            Out { src } => x!(OUT, src),
            Mul { dst, x, y } => x!(MUL, dst, x, y),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use Condition::*;
    use Instruction::*;
    use Register::*;

    #[test]
    fn disassembly() -> Result<(), MOSISError> {
        macro_rules! assert_dis {
            ($d:expr, $i:expr) => {
                assert_eq!(Instruction::disassemble($d)?, $i);
            };
        }

        assert_dis!(0x0012, Mov { dst: R1, src: R2 });
        assert_dis!(0x0021, Mov { dst: R2, src: R1 });
        assert_dis!(0x1122, Movi { dst: R1, imm: 0x22 });
        assert_dis!(0x1b01, Movi { dst: Rb, imm: 1 });
        assert_dis!(0x2312, Add { dst: R3, x: R1, y: R2 });
        assert_dis!(0x2a34, Add { dst: Ra, x: R3, y: R4 });
        assert_dis!(0x3a98, Sub { dst: Ra, x: R9, y: R8 });
        assert_dis!(0x3fed, Sub { dst: Rf, x: Re, y: Rd });
        assert_dis!(0x4012, Cmp { x: R1, y: R2 });
        assert_dis!(0x40bc, Cmp { x: Rb, y: Rc });
        assert_dis!(0x5085, Jcc { cond: Equal, offset: -5 });
        assert_dis!(0x40ab, Cmp { x: Ra, y: Rb });
        assert_dis!(0x542a, Jcc { cond: GreaterThanOrEqual, offset: 42 });
        assert_dis!(0x61a2, Jmp { address: 0x1a2 });
        assert_dis!(0x6eab, Jmp { address: 0xeab });
        assert_dis!(0x7fce, Call { address: 0xfce });
        assert_dis!(0x7123, Call { address: 0x123 });
        assert_dis!(0x8000, Ret);
        assert_dis!(0x9000, Nop);
        assert_dis!(0xa004, In { dst: R4 });
        assert_dis!(0xa00c, In { dst: Rc });
        assert_dis!(0xb005, Out { src: R5 });
        assert_dis!(0xb00d, Out { src: Rd });
        assert_dis!(0xca98, Mul { dst: Ra, x: R9, y: R8 });
        assert_dis!(0xcfed, Mul { dst: Rf, x: Re, y: Rd });

        Ok(())
    }

    fn roundtrip(mc: u16) -> bool {
        let (inst, mc) = match Instruction::disassemble(mc) {
            // special case: force 0 offset to have positive sign
            Ok(i @ Jcc { offset: 0, .. }) => (i, mc & 0xff7f),

            // mask out the unused bits to always be zero
            Ok(i @ Nop) => (i, mc & 0xf000),
            Ok(i @ Ret) => (i, mc & 0xf000),
            Ok(i @ Mov { .. }) => (i, mc & 0xf0ff),
            Ok(i @ Cmp { .. }) => (i, mc & 0xf0ff),
            Ok(i @ In { .. }) => (i, mc & 0xf00f),
            Ok(i @ Out { .. }) => (i, mc & 0xf00f),

            // invalid instructions can't be re-assembled, so just pass
            Err(_) => return true,
            Ok(i) => (i, mc),
        };
        mc == inst.assemble()
    }

    #[test]
    fn roundtrip_bruteforce() {
        for x in 0..=u16::MAX {
            assert!(roundtrip(x));
        }
    }

    #[test]
    fn print_test() -> Result<(), MOSISError> {
        println!("");
        let bytes = &[0x23, 0x12, 0x2a, 0x34, 0x3a, 0x98, 0x3f, 0xed];
        for instruction in linear_sweep(bytes) {
            println!("{}", instruction?);
        }
        Ok(())
    }
}