1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
//!
//! File : portfolio_2_frontier.rs
//!
//! Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
//!
//! Description :  Implements a basic portfolio optimization model.
//!                Determines points on the efficient frontier.
//!

extern crate mosek;
extern crate itertools;
use mosek::{Task,Objsense,Solsta,Soltype};
use itertools::{iproduct};

/// Solve basic Markowitz portfolio problem for different risk bounds
/// to produce a list of points on the efficient frontier.
///
/// ```
/// Maximize mu'x - alpha * s
/// Subject to
///    budget : sum(x) = sum(x0)+w
///    risk:    s >= || G'x ||
///    x >= 0
/// ```
///
/// # Arguments
///
/// - `n` number of assets
/// - `alphas` list of risk bound (bound on the standard deviation)
/// - `mu` vector of expected returns
/// - `GT` Covariance matrix factor
/// - `x0` vector if initial investment
/// - `w` initial uninvested wealth
#[allow(non_snake_case)]
fn portfolio(n : i32,
             mu : &[f64],
             GT : &[f64],
             x0  : &[f64],
             alphas : &[f64],
             w : f64) -> Result<Vec<(f64,f64)>,String> {
    let k = (GT.len() / n as usize) as i32;
    /* Create the optimization task. */
    let mut task = match Task::new() {
        Some(t) => t,
        None => return Err("Failed to create task".to_string()),
    };
    //task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;

    task.append_vars(n+1)?;
    task.append_cons(1)?;

    /* Objective */
    task.put_obj_sense(Objsense::MAXIMIZE)?;

    let x : Vec<i32> = (0i32..n).collect();
    let s = n;

    /* Total budget */
    let total_budget = w + x0.iter().sum::<f64>();

    /* Total budget constraint - set bounds l^c = u^c */
    task.put_con_bound(0i32, mosek::Boundkey::FX, total_budget, total_budget)?;
    task.put_con_name(0i32,"budget")?;
    task.put_c_slice(0,n,mu)?;

    /* x variables. */
    for (j,xj) in x.iter().enumerate() {
        /* Coefficients in the first row of A */
        task.put_aij(0, *xj, 1.0)?;
        /* No short-selling - x^l = 0, x^u = inf */
        task.put_var_bound(*xj, mosek::Boundkey::LO, 0.0, 0.0)?;
        task.put_var_name(*xj, format!("x[{}]",j+1).as_str())?;
    }
    task.put_var_name(s, "s")?;
    task.put_var_bound(s, mosek::Boundkey::FR, 0.0, 0.0)?;

    // risk bound
    // (s,0.5,GT * x) in Q_r
    {
        let acci = task.get_num_acc()?;
        let afei = task.get_num_afe()?;

        task.append_afes(k as i64 + 2)?;
        let dom = task.append_r_quadratic_cone_domain(k as i64+2)?;
        task.append_acc_seq(dom,
                            afei,
                            vec![0.0; k as usize + 2].as_slice())?;
        task.put_acc_name(acci,"risk")?;
        task.put_afe_f_entry(afei,s,1.0)?;
        task.put_afe_g(afei+1,0.5)?;

        for ((i,j),v) in iproduct!(0..n,0..n).zip(GT).filter(|(_,v)| **v != 0.0) {
            task.put_afe_f_entry(afei + i as i64 + 2, j as i32, *v)?;
        }
    }

    let frontier : Vec<(f64,f64)> = alphas.iter().filter_map(|alpha| {
        /* Sets the objective function coefficient for s. */
        if      let Err(_) = task.put_c_j(s, - *alpha) { None }
        else if let Err(_) = task.optimize() { None }
        else if let Err(_) = task.write_data(format!("portfolio_2_frontier-{}.ptf",alpha).as_str()) { None }
        else if let Ok(solsta) = task.get_sol_sta(Soltype::ITR) {
            // See https://docs.mosek.com/latest/rustapi/accessing-solution.html about handling solution statuses.
            match solsta {
                Solsta::OPTIMAL => {
                    let mut xx = vec![0.0; n as usize+1];
                    if let Err(_) = task.get_xx(Soltype::ITR,xx.as_mut_slice()) { None }
                    else {
                        Some((*alpha,mu.iter().zip(xx.iter()).map(|(m,x)| m * x).sum::<f64>()))
                    }
                }
                _ => None
            }
        }
        else {
            None
        }
    }).collect();

    Ok(frontier)
}

#[allow(non_snake_case)]
fn main() -> Result<(),String> {
    let n : i32 = 8;
    let w  = 1.0;
    let mu = &[0.07197, 0.15518, 0.17535, 0.08981, 0.42896, 0.39292, 0.32171, 0.18379];
    let x0 = &[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0];
    let GT = &[ 0.30758, 0.12146, 0.11341, 0.11327, 0.17625, 0.11973, 0.10435, 0.10638,
                0.     , 0.25042, 0.09946, 0.09164, 0.06692, 0.08706, 0.09173, 0.08506,
                0.     , 0.     , 0.19914, 0.05867, 0.06453, 0.07367, 0.06468, 0.01914,
                0.     , 0.     , 0.     , 0.20876, 0.04933, 0.03651, 0.09381, 0.07742,
                0.     , 0.     , 0.     , 0.     , 0.36096, 0.12574, 0.10157, 0.0571 ,
                0.     , 0.     , 0.     , 0.     , 0.     , 0.21552, 0.05663, 0.06187,
                0.     , 0.     , 0.     , 0.     , 0.     , 0.     , 0.22514, 0.03327,
                0.     , 0.     , 0.     , 0.     , 0.     , 0.     , 0.     , 0.2202 ];
    let alphas = &[0.0, 0.01, 0.1, 0.25, 0.30, 0.35, 0.4, 0.45, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 10.0];

    println!("{:10}   {:10}","alpha","exp.ret.");
    for (alpha,expret) in portfolio(n,
                                    mu,
                                    GT,
                                    x0,
                                    alphas,
                                    w)? {
        println!("{:10.3e} : {:10.e}",alpha,expret);
    }

    Ok(())
}


#[cfg(test)]
mod tests {
    #[test]
    fn test() {
        super::main().unwrap();
    }
}