1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
// Copyright (c) 2016-2020 Fabian Schuiki

//! Dealing with types in an abstract manner.

use std::borrow::Borrow;
use std::fmt::{self, Debug, Display};

pub use num::BigInt;

use crate::ty2::access::*;
use crate::ty2::enums::*;
use crate::ty2::floats::*;
use crate::ty2::ints::*;
use crate::ty2::physical::*;

/// An interface for dealing with types.
///
/// This is the main type trait, which all types and subtypes implement.
pub trait Type: Debug + Display {
    /// Check if this is a scalar type.
    ///
    /// Enumeration, integer, floating-point, and physical types are scalar.
    fn is_scalar(&self) -> bool;

    /// Check if this is a discrete type.
    ///
    /// Enumeration and integer types are discrete.
    fn is_discrete(&self) -> bool;

    /// Check if this is a numeric type.
    ///
    /// Integer, floating-point, and physical types are numeric.
    fn is_numeric(&self) -> bool;

    /// Check if this is a composite type.
    ///
    /// Array and record types are composite.
    fn is_composite(&self) -> bool;

    /// Convert into an owned type.
    fn into_owned<'a>(self) -> OwnedType<'a>
    where
        Self: 'a;

    /// Clone this type.
    fn to_owned<'a>(&self) -> OwnedType<'a>
    where
        Self: 'a;

    /// Converts from `&Type` to `AnyType`.
    fn as_any(&self) -> AnyType;

    /// Check if two types are equal.
    fn is_equal(&self, other: &Type) -> bool {
        self.as_any() == other.as_any()
    }

    /// Check if the type can be implicitly cast to another.
    fn is_implicitly_castable(&self, _into: &Type) -> bool {
        false
    }
}

impl<'a> PartialEq for Type + 'a {
    fn eq(&self, other: &Type) -> bool {
        self.is_equal(other)
    }
}

impl<'a> Eq for Type + 'a {}

impl<'t> ToOwned for Type + 't {
    type Owned = OwnedType<'t>;

    fn to_owned(&self) -> OwnedType<'t> {
        Type::to_owned(self)
    }
}

/// A type.
///
/// This enum represents one of the types declared in this module. It is useful
/// in code that needs to know exactly what type it is operating on, for example
/// in a match expression. This is the root of the entire type system. If a user
/// declares a type, this enum carries the information as to which type was
/// declared.
#[derive(Copy, Clone, PartialEq)]
#[allow(missing_docs)]
pub enum AnyType<'t> {
    Enum(&'t EnumType),
    Integer(&'t IntegerType),
    Floating(&'t FloatingType),
    Physical(&'t PhysicalType),
    Array(&'t ArrayType<'t>),
    // record
    // access
    Access(&'t AccessType<'t>),
    // file
    // protected

    // Non-standard types.
    Null,
    UniversalInteger,
    UniversalReal,
    // subprogram
}

impl<'t> Display for AnyType<'t> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        Display::fmt(self.as_type(), f)
    }
}

impl<'t> Debug for AnyType<'t> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        Debug::fmt(self.as_type(), f)
    }
}

// impl<'t, T: Type> From<&'t T> for AnyType<'t> {
//     fn from(ty: &'t T) -> AnyType<'t> {
//         ty.as_any()
//     }
// }

impl<'t> AnyType<'t> {
    /// Perform type erasure.
    pub fn as_type(self) -> &'t Type {
        match self {
            AnyType::Enum(t) => t.as_type(),
            AnyType::Integer(t) => t.as_type(),
            AnyType::Floating(t) => t.as_type(),
            AnyType::Physical(t) => t.as_type(),
            AnyType::Array(t) => t,
            AnyType::Access(t) => t,
            AnyType::Null => &NullType,
            AnyType::UniversalInteger => &UniversalIntegerType,
            AnyType::UniversalReal => &UniversalRealType,
        }
    }

    /// Returns `Some(t)` if the type is `Enum(t)`, `None` otherwise.
    pub fn as_enum(self) -> Option<&'t EnumType> {
        match self {
            AnyType::Enum(t) => Some(t),
            _ => None,
        }
    }

    /// Returns `Some(t)` if the type is `Integer(t)`, `None` otherwise.
    pub fn as_integer(self) -> Option<&'t IntegerType> {
        match self {
            AnyType::Integer(t) => Some(t),
            _ => None,
        }
    }

    /// Returns `Some(t)` if the type is `Floating(t)`, `None` otherwise.
    pub fn as_floating(self) -> Option<&'t FloatingType> {
        match self {
            AnyType::Floating(t) => Some(t),
            _ => None,
        }
    }

    /// Returns `Some(t)` if the type is `Physical(t)`, `None` otherwise.
    pub fn as_physical(self) -> Option<&'t PhysicalType> {
        match self {
            AnyType::Physical(t) => Some(t),
            _ => None,
        }
    }

    /// Returns `Some(t)` if the type is `Array(t)`, `None` otherwise.
    pub fn as_array(self) -> Option<&'t ArrayType<'t>> {
        match self {
            AnyType::Array(t) => Some(t),
            _ => None,
        }
    }

    /// Returns `Some(t)` if the type is `Access(t)`, `None` otherwise.
    pub fn as_access(self) -> Option<&'t AccessType<'t>> {
        match self {
            AnyType::Access(t) => Some(t),
            _ => None,
        }
    }

    /// Checks if the type is `Null`.
    pub fn is_null(self) -> bool {
        match self {
            AnyType::Null => true,
            _ => false,
        }
    }

    /// Checks if the type is `UniversalInteger`.
    pub fn is_universal_integer(self) -> bool {
        match self {
            AnyType::UniversalInteger => true,
            _ => false,
        }
    }

    /// Checks if the type is `UniversalReal`.
    pub fn is_universal_real(self) -> bool {
        match self {
            AnyType::UniversalReal => true,
            _ => false,
        }
    }

    /// Returns an `&EnumType` or panics if the type is not `Enum`.
    pub fn unwrap_enum(self) -> &'t EnumType {
        self.as_enum().expect("type is not an enum type")
    }

    /// Returns an `&IntegerType` or panics if the type is not `Integer`.
    pub fn unwrap_integer(self) -> &'t IntegerType {
        self.as_integer().expect("type is not an integer type")
    }

    /// Returns an `&FloatingType` or panics if the type is not `Floating`.
    pub fn unwrap_floating(self) -> &'t FloatingType {
        self.as_floating()
            .expect("type is not a floating-point type")
    }

    /// Returns an `&PhysicalType` or panics if the type is not `Physical`.
    pub fn unwrap_physical(self) -> &'t PhysicalType {
        self.as_physical().expect("type is not a physical type")
    }

    /// Returns an `&ArrayType` or panics if the type is not `Array`.
    pub fn unwrap_array(self) -> &'t ArrayType<'t> {
        self.as_array().expect("type is not an array type")
    }

    /// Returns an `&AccessType` or panics if the type is not `Access`.
    pub fn unwrap_access(self) -> &'t AccessType<'t> {
        self.as_access().expect("type is not an access type")
    }

    /// Check if this is a scalar type.
    pub fn is_scalar(&self) -> bool {
        self.as_type().is_scalar()
    }

    /// Check if this is a discrete type.
    pub fn is_discrete(&self) -> bool {
        self.as_type().is_discrete()
    }

    /// Check if this is a numeric type.
    pub fn is_numeric(&self) -> bool {
        self.as_type().is_numeric()
    }

    /// Check if this is a composite type.
    pub fn is_composite(&self) -> bool {
        self.as_type().is_composite()
    }

    /// Clone this type.
    pub fn to_owned(&self) -> OwnedType<'t> {
        self.as_type().to_owned()
    }
}

/// An owned type.
#[derive(Clone, PartialEq, Eq)]
#[allow(missing_docs)]
pub enum OwnedType<'t> {
    EnumBasetype(EnumBasetype),
    EnumSubtype(EnumSubtype<'t>),
    IntegerBasetype(IntegerBasetype),
    IntegerSubtype(IntegerSubtype<'t>),
    FloatingBasetype(FloatingBasetype),
    FloatingSubtype(FloatingSubtype<'t>),
    PhysicalBasetype(PhysicalBasetype),
    PhysicalSubtype(PhysicalSubtype<'t>),
    Access(AccessType<'t>),
    Null,
    UniversalInteger,
    UniversalReal,
}

impl<'t> Borrow<Type + 't> for OwnedType<'t> {
    fn borrow(&self) -> &(Type + 't) {
        match *self {
            OwnedType::EnumBasetype(ref k) => k,
            OwnedType::EnumSubtype(ref k) => k,
            OwnedType::IntegerBasetype(ref k) => k,
            OwnedType::IntegerSubtype(ref k) => k,
            OwnedType::FloatingBasetype(ref k) => k,
            OwnedType::FloatingSubtype(ref k) => k,
            OwnedType::PhysicalBasetype(ref k) => k,
            OwnedType::PhysicalSubtype(ref k) => k,
            OwnedType::Access(ref k) => k,
            OwnedType::Null => &NullType,
            OwnedType::UniversalInteger => &UniversalIntegerType,
            OwnedType::UniversalReal => &UniversalRealType,
        }
    }
}

impl<'t> Display for OwnedType<'t> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        <Type as Display>::fmt(self.borrow(), f)
    }
}

impl<'t> Debug for OwnedType<'t> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        <Type as Debug>::fmt(self.borrow(), f)
    }
}

/// An array type.
#[derive(Debug, Clone, PartialEq)]
pub struct ArrayType<'t> {
    /// The index subtypes.
    indices: Vec<&'t Type>,
    /// The element subtype.
    element: &'t Type,
}

impl<'t> Type for ArrayType<'t> {
    fn is_scalar(&self) -> bool {
        false
    }

    fn is_discrete(&self) -> bool {
        false
    }

    fn is_numeric(&self) -> bool {
        false
    }

    fn is_composite(&self) -> bool {
        true
    }

    fn into_owned<'a>(self) -> OwnedType<'a>
    where
        Self: 'a,
    {
        unimplemented!()
    }

    fn to_owned<'a>(&self) -> OwnedType<'a>
    where
        Self: 'a,
    {
        unimplemented!()
    }

    fn as_any(&self) -> AnyType {
        AnyType::Array(self)
    }
}

impl<'t> Display for ArrayType<'t> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "array")?;
        Ok(())
    }
}

/// A null type.
///
/// This type is not strictly part of the VHDL type system. Rather, arrays that
/// have negative length degenerate into null arrays. We handle these types
/// explicitly, since they significantly change how types match.
///
/// # Example
///
/// ```
/// use moore_vhdl::ty2::{Type, NullType};
///
/// let ty = NullType;
///
/// assert_eq!(format!("{}", ty), "null");
/// assert_eq!(ty.is_scalar(), false);
/// assert_eq!(ty.is_discrete(), false);
/// assert_eq!(ty.is_numeric(), false);
/// ```
#[derive(Debug, Clone, Copy)]
pub struct NullType;

impl Type for NullType {
    fn is_scalar(&self) -> bool {
        false
    }

    fn is_discrete(&self) -> bool {
        false
    }

    fn is_numeric(&self) -> bool {
        false
    }

    fn is_composite(&self) -> bool {
        false
    }

    fn into_owned<'a>(self) -> OwnedType<'a>
    where
        Self: 'a,
    {
        OwnedType::Null
    }

    fn to_owned<'a>(&self) -> OwnedType<'a>
    where
        Self: 'a,
    {
        OwnedType::Null
    }

    fn as_any(&self) -> AnyType {
        AnyType::Null
    }
}

impl Display for NullType {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "null")
    }
}