1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
// Copyright (c) 2016-2020 Fabian Schuiki

//! Physical types.

use std::fmt::{self, Display};
use std::iter::{once, repeat};
use std::ops::Deref;

pub use num::BigInt;

use crate::common::name::Name;
use crate::ty2::prelude::*;
use crate::ty2::ScalarSubtype;

/// A physical type.
///
/// This can either be an `PhysicalBasetype` or a `PhysicalSubtype`.
pub trait PhysicalType: Type {
    /// Convert to a type.
    fn as_type(&self) -> &Type;

    /// The range of values this physical type can assume.
    fn range(&self) -> &Range<BigInt>;

    /// The units of measure of this type.
    fn units(&self) -> &[PhysicalUnit];

    /// The index of the primary unit.
    fn primary_index(&self) -> usize;

    /// The base type of this physical type.
    fn base_type(&self) -> &Type;

    /// The resolution function associated with this type.
    fn resolution_func(&self) -> Option<usize> {
        None
    }

    /// Returns `Some` if self is a `PhysicalBasetype`, `None` otherwise.
    fn as_basetype(&self) -> Option<&PhysicalBasetype> {
        None
    }

    /// Returns `Some` if self is a `PhysicalSubtype`, `None` otherwise.
    fn as_subtype(&self) -> Option<&PhysicalSubtype> {
        None
    }

    /// Returns an `&PhysicalBasetype` or panics if the type is not a basetype.
    fn unwrap_basetype(&self) -> &PhysicalBasetype {
        self.as_basetype().expect("physical type is not a basetype")
    }

    /// Returns an `&PhysicalSubtype` or panics if the type is not a subtype.
    fn unwrap_subtype(&self) -> &PhysicalSubtype {
        self.as_subtype().expect("physical type is not a subtype")
    }

    /// Check if two physical types are equal.
    fn is_equal(&self, other: &PhysicalType) -> bool;
}

impl<'t> PartialEq for PhysicalType + 't {
    fn eq(&self, other: &PhysicalType) -> bool {
        PhysicalType::is_equal(self, other)
    }
}

impl<'t> Eq for PhysicalType + 't {}

macro_rules! common_type_impl {
    () => {
        fn is_scalar(&self) -> bool {
            true
        }

        fn is_discrete(&self) -> bool {
            false
        }

        fn is_numeric(&self) -> bool {
            true
        }

        fn is_composite(&self) -> bool {
            false
        }

        fn as_any(&self) -> AnyType {
            AnyType::Physical(self)
        }
    };
}

/// A physical base type.
///
/// In VHDL a physical type is an integer multiple of some measurement unit.
/// A physical type has exactly one primary unit, and multiple secondary units
/// defined as multiples of that primary unit.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct PhysicalBasetype {
    /// The range of integer multiples of the primary unit.
    range: Range<BigInt>,
    /// The units of this type.
    units: Vec<PhysicalUnit>,
    /// The index of the primary unit.
    primary: usize,
}

impl PhysicalBasetype {
    /// Create a new physical type.
    ///
    /// # Example
    ///
    /// ```
    /// use moore_vhdl::ty2::{PhysicalBasetype, PhysicalUnit, Range};
    /// use moore_common::name::get_name_table;
    ///
    /// let ty = PhysicalBasetype::new(Range::ascending(0, 1_000_000), vec![
    ///     PhysicalUnit::primary(get_name_table().intern("fs", false), 1),
    ///     PhysicalUnit::secondary(get_name_table().intern("ps", false), 1_000, 1000, 0),
    ///     PhysicalUnit::secondary(get_name_table().intern("ns", false), 1_000_000, 1000, 1),
    /// ], 0);
    ///
    /// assert_eq!(format!("{}", ty), "0 to 1000000 units (fs, ps, ns)");
    /// ```
    pub fn new<I>(range: Range<BigInt>, units: I, primary: usize) -> PhysicalBasetype
    where
        I: IntoIterator<Item = PhysicalUnit>,
    {
        PhysicalBasetype {
            range: range,
            units: units.into_iter().collect(),
            primary: primary,
        }
    }
}

impl Type for PhysicalBasetype {
    common_type_impl!();

    fn into_owned<'a>(self) -> OwnedType<'a>
    where
        Self: 'a,
    {
        OwnedType::PhysicalBasetype(self)
    }

    fn to_owned<'a>(&self) -> OwnedType<'a>
    where
        Self: 'a,
    {
        OwnedType::PhysicalBasetype(self.clone())
    }
}

impl PhysicalType for PhysicalBasetype {
    fn as_type(&self) -> &Type {
        self
    }

    fn range(&self) -> &Range<BigInt> {
        &self.range
    }

    fn units(&self) -> &[PhysicalUnit] {
        &self.units
    }

    fn primary_index(&self) -> usize {
        self.primary
    }

    fn base_type(&self) -> &Type {
        self
    }

    fn as_basetype(&self) -> Option<&PhysicalBasetype> {
        Some(self)
    }

    fn is_equal(&self, other: &PhysicalType) -> bool {
        other.as_basetype().map(|t| self == t).unwrap_or(false)
    }
}

impl Display for PhysicalBasetype {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{} units (", self.range)?;
        for (sep, unit) in once("").chain(repeat(", ")).zip(self.units.iter()) {
            write!(f, "{}{}", sep, unit.name)?;
        }
        write!(f, ")")?;
        Ok(())
    }
}

impl Deref for PhysicalBasetype {
    type Target = Range<BigInt>;
    fn deref(&self) -> &Range<BigInt> {
        &self.range
    }
}

/// A subtype of an integer type.
pub type PhysicalSubtype<'t> = ScalarSubtype<'t, PhysicalType, BigInt>;

impl<'t> PhysicalSubtype<'t> {
    /// Create a new integer subtype.
    ///
    /// Returns `Some(...)` if `range` is a subrange of the integer, or `None`
    /// otherwise.
    ///
    /// # Example
    ///
    /// ```
    /// use moore_vhdl::ty2::{Type, TypeMark, PhysicalUnit, PhysicalBasetype, PhysicalSubtype, Range};
    /// use moore_common::name::get_name_table;
    ///
    /// let ty = PhysicalBasetype::new(Range::ascending(-1000isize, 1000isize), vec![
    ///     PhysicalUnit::primary(get_name_table().intern("fs", false), 1),
    ///     PhysicalUnit::secondary(get_name_table().intern("ps", false), 1000, 1000, 0),
    /// ], 0);
    /// let tm = TypeMark::new(
    ///     get_name_table().intern("TIME", false),
    ///     &ty,
    /// );
    /// let a = PhysicalSubtype::new(&tm, Range::ascending(0isize, 100isize)).unwrap();
    /// let b = PhysicalSubtype::new(&tm, Range::descending(100isize, 0isize)).unwrap();
    ///
    /// assert_eq!(format!("{}", a), "TIME range 0 to 100");
    /// assert_eq!(format!("{}", b), "TIME range 100 downto 0");
    /// ```
    pub fn new(mark: &'t TypeMark<'t>, range: Range<BigInt>) -> Option<PhysicalSubtype<'t>> {
        let base = mark.as_any().as_physical()?;
        let base_range = base.range();
        if base_range.has_subrange(&range) {
            Some(PhysicalSubtype {
                resfn: base.resolution_func(),
                mark: mark,
                base: base,
                con: range,
            })
        } else {
            None
        }
    }
}

impl<'t> Type for PhysicalSubtype<'t> {
    common_type_impl!();

    fn into_owned<'a>(self) -> OwnedType<'a>
    where
        Self: 'a,
    {
        OwnedType::PhysicalSubtype(self)
    }

    fn to_owned<'a>(&self) -> OwnedType<'a>
    where
        Self: 'a,
    {
        OwnedType::PhysicalSubtype(self.clone())
    }
}

impl<'t> PhysicalType for PhysicalSubtype<'t> {
    fn as_type(&self) -> &Type {
        self
    }

    fn range(&self) -> &Range<BigInt> {
        &self.con
    }

    fn units(&self) -> &[PhysicalUnit] {
        self.base.units()
    }

    fn primary_index(&self) -> usize {
        self.base.primary_index()
    }

    fn base_type(&self) -> &Type {
        self.base.as_type()
    }

    fn as_subtype(&self) -> Option<&PhysicalSubtype> {
        Some(self)
    }

    fn is_equal(&self, other: &PhysicalType) -> bool {
        other.as_subtype().map(|t| self == t).unwrap_or(false)
    }
}

impl<'t> Display for PhysicalSubtype<'t> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{} range {}", self.mark, self.con)
    }
}

/// A unit of a physical type.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct PhysicalUnit {
    /// The name of the unit.
    pub name: Name,
    /// The scale of the unit with respect to the physical type's primary unit.
    pub abs: BigInt,
    /// The scale of the unit with respect to another unit.
    pub rel: Option<(BigInt, usize)>,
}

impl PhysicalUnit {
    /// Create a new unit.
    ///
    /// # Example
    ///
    /// ```
    /// use moore_vhdl::ty2::{PhysicalUnit, BigInt};
    /// use moore_common::name::get_name_table;
    ///
    /// let name = get_name_table().intern("fs", false);
    /// let unit = PhysicalUnit::new(name, 1, Some((1000, 0)));
    ///
    /// assert_eq!(unit.name, name);
    /// assert_eq!(unit.abs, BigInt::from(1));
    /// assert_eq!(unit.rel, Some((BigInt::from(1000), 0)));
    /// ```
    pub fn new<A, R>(name: Name, abs: A, rel: Option<(R, usize)>) -> PhysicalUnit
    where
        BigInt: From<A> + From<R>,
    {
        PhysicalUnit {
            name: name,
            abs: abs.into(),
            rel: rel.map(|(rel, rel_to)| (rel.into(), rel_to)),
        }
    }

    /// Create a new primary unit.
    ///
    /// # Example
    ///
    /// ```
    /// use moore_vhdl::ty2::{PhysicalUnit, BigInt};
    /// use moore_common::name::get_name_table;
    ///
    /// let name = get_name_table().intern("fs", false);
    /// let unit = PhysicalUnit::primary(name, 1);
    ///
    /// assert_eq!(unit.name, name);
    /// assert_eq!(unit.abs, BigInt::from(1));
    /// assert_eq!(unit.rel, None);
    /// ```
    pub fn primary<A>(name: Name, abs: A) -> PhysicalUnit
    where
        BigInt: From<A>,
    {
        PhysicalUnit {
            name: name,
            abs: abs.into(),
            rel: None,
        }
    }

    /// Create a new secondary unit.
    ///
    /// # Example
    ///
    /// ```
    /// use moore_vhdl::ty2::{PhysicalUnit, BigInt};
    /// use moore_common::name::get_name_table;
    ///
    /// let name = get_name_table().intern("fs", false);
    /// let unit = PhysicalUnit::secondary(name, 1, 1000, 0);
    ///
    /// assert_eq!(unit.name, name);
    /// assert_eq!(unit.abs, BigInt::from(1));
    /// assert_eq!(unit.rel, Some((BigInt::from(1000), 0)));
    /// ```
    pub fn secondary<A, R>(name: Name, abs: A, rel: R, rel_to: usize) -> PhysicalUnit
    where
        BigInt: From<A> + From<R>,
    {
        PhysicalUnit {
            name: name,
            abs: abs.into(),
            rel: Some((rel.into(), rel_to)),
        }
    }
}