1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
// Copyright (c) 2017 Fabian Schuiki

//! This module implements VHDL types.

use std::fmt;
use std::collections::HashMap;

use num::{BigInt, One};

use score::*;
use moore_common::source::Span;
use moore_common::name::Name;
pub use hir::Dir;


#[derive(Debug, Clone, PartialEq, Eq)]
pub enum Ty {
	/// A named type. In a signal declaration for example, the source code
	/// mentions the type of the signal. This type name is resolved to its
	/// actual declaration somewhere else in the source code. Thus this type
	/// acts as a sort of "pointer" to a type, together with information on how
	/// the source code referred to that type. This helps make error messages
	/// easier to read for the user.
	Named(Span, TypeMarkRef),
	/// The null type.
	Null,
	/// An integer type.
	Int(IntTy),
	/// An unbounded integer type. This is the type integers have that are
	/// evaluated at compile time, e.g. as part of a range expression. Cannot be
	/// mapped to LLHD.
	UnboundedInt,
	/// An enumeration type.
	Enum(EnumTy),
	/// An access type.
	Access(Box<Ty>),
	/// An array type.
	Array(ArrayTy),
	/// A file type.
	File(Box<Ty>),
	/// A record type.
	Record(RecordTy),
}

impl Ty {
	/// Provide a textual description of the kind of type. For example, if
	/// called on an integer type, the result is `"integer type"`, without any
	/// information on the exact nature of the integer.
	pub fn kind_desc(&self) -> &'static str {
		match *self {
			Ty::Named(..) => "named type",
			Ty::Null => "null type",
			Ty::Int(_) | Ty::UnboundedInt => "integer type",
			Ty::Enum(_) => "enumeration type",
			Ty::Access(_) => "access type",
			Ty::Array(_) => "array type",
			Ty::File(..) => "file type",
			Ty::Record(_) => "record type",
		}
	}
}

impl From<IntTy> for Ty {
	fn from(t: IntTy) -> Ty {
		Ty::Int(t)
	}
}

impl From<EnumTy> for Ty {
	fn from(t: EnumTy) -> Ty {
		Ty::Enum(t)
	}
}

impl From<ArrayTy> for Ty {
	fn from(t: ArrayTy) -> Ty {
		Ty::Array(t)
	}
}

impl From<RecordTy> for Ty {
	fn from(t: RecordTy) -> Ty {
		Ty::Record(t)
	}
}

impl fmt::Display for Ty {
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		match *self {
			Ty::Named(span, _) => write!(f, "{}", span.extract()),
			Ty::Null => write!(f, "null"),
			Ty::Int(ref ty) => write!(f, "{}", ty),
			Ty::UnboundedInt => write!(f, "{{integer}}"),
			Ty::Enum(ref ty) => write!(f, "{}", ty),
			Ty::Access(ref ty) => write!(f, "access {}", ty),
			Ty::Array(ref ty) => write!(f, "{}", ty),
			Ty::File(ref ty) => write!(f, "file of {}", ty),
			Ty::Record(ref ty) => write!(f, "{}", ty),
		}
	}
}


/// An integer type.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct IntTy {
	pub dir: Dir,
	pub left_bound: BigInt,
	pub right_bound: BigInt,
}

impl IntTy {
	/// Create a new integer type.
	pub fn new(dir: Dir, left_bound: BigInt, right_bound: BigInt) -> IntTy {
		IntTy {
			dir: dir,
			left_bound: left_bound,
			right_bound: right_bound,
		}
	}


	/// Map the type to itself if the range has a positive length, or to `null`
	/// if the range has a negative or zero length.
	pub fn maybe_null(self) -> Ty {
		match self.dir {
			Dir::To     if self.left_bound >= self.right_bound => Ty::Null,
			Dir::Downto if self.left_bound <= self.right_bound => Ty::Null,
			_ => self.into(),
		}
	}

	/// The length of the range.
	pub fn len(&self) -> BigInt {
		match self.dir {
			Dir::To     => &self.left_bound + BigInt::one() - &self.right_bound,
			Dir::Downto => &self.right_bound + BigInt::one() - &self.left_bound,
		}
	}
}

impl fmt::Display for IntTy {
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		write!(f, "{} {} {}", self.left_bound, self.dir, self.right_bound)
	}
}


/// An enumeration type. Rather than keeping track of each enumeration value in
/// here, we simply point at the type declaration.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct EnumTy {
	/// The declaration of the enum.
	pub decl: TypeDeclRef,
}

impl EnumTy {
	/// Create a new enumeration type.
	pub fn new(decl: TypeDeclRef) -> EnumTy {
		EnumTy {
			decl: decl,
		}
	}
}

impl fmt::Display for EnumTy {
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		// TODO: It should be possible somehow to print better information here.
		//       Maybe if we make `Ty` aware of its own internalization we could
		//       assign additional user-facing metadata, e.g. a variant list.
		write!(f, "enum")
	}
}


/// An array type.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ArrayTy {
	/// The index types of the array, at least one.
	pub indices: Vec<ArrayIndex>,
	/// The type of the array element.
	pub element: Box<Ty>,
}

impl ArrayTy {
	/// Create a new array type.
	pub fn new(indices: Vec<ArrayIndex>, element: Box<Ty>) -> ArrayTy {
		assert!(indices.len() > 0);
		ArrayTy {
			indices: indices,
			element: element,
		}
	}
}

impl fmt::Display for ArrayTy {
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		write!(f, "array ({}) of {}",
			DisplayList(self.indices.iter(), Some(&","), Some(&", "), Some(&", ")),
			self.element
		)
	}
}

/// An index type of an array type.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum ArrayIndex {
	/// An unbounded index of the form `<type_mark> range <>`.
	Unbounded(Box<Ty>),
	/// A constrained index of the form `range ...`.
	Constrained(Box<Ty>),
}

impl fmt::Display for ArrayIndex {
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		match *self {
			ArrayIndex::Unbounded(ref ty) => write!(f, "{} range <>", ty),
			ArrayIndex::Constrained(ref ty) => write!(f, "{}", ty),
		}
	}
}

impl ArrayIndex {
	/// Get the type of the array index, regardless of its boundedness.
	pub fn ty(&self) -> &Ty {
		match *self {
			ArrayIndex::Unbounded(ref ty) => ty.as_ref(),
			ArrayIndex::Constrained(ref ty) => ty.as_ref(),
		}
	}
}

/// A record type.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct RecordTy {
	/// The fields of the record.
	pub fields: Vec<(Name, Box<Ty>)>,
	/// A lookup table to access fields by name.
	pub lookup: HashMap<Name, usize>,
}

impl RecordTy {
	/// Create a new array type.
	pub fn new(fields: Vec<(Name, Box<Ty>)>) -> RecordTy {
		let lookup = fields.iter().enumerate().map(|(i,&(n,_))| (n,i)).collect();
		RecordTy {
			fields: fields,
			lookup: lookup,
		}
	}
}

impl fmt::Display for RecordTy {
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		write!(f, "record")?;
		if self.fields.is_empty() {
			return Ok(());
		}
		write!(f, "\n")?;
		for &(name, ref field) in &self.fields {
			let indented = format!("{}", field).replace('\n', "\n    ");
			write!(f, "   {}: {};\n", name, indented)?;
		}
		write!(f, "end record")?;
		Ok(())
	}
}

pub struct DisplayList<'a, T> (T, Option<&'a fmt::Display>, Option<&'a fmt::Display>, Option<&'a fmt::Display>);

impl<'a, T, I> fmt::Display for DisplayList<'a, T>
	where T: Iterator<Item=I> + Clone, I: fmt::Display
{
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		let mut iter = self.0.clone();
		match iter.next() {
			Some(x) => write!(f, "{}", x)?,
			None => return Ok(()),
		}
		let mut last = match iter.next() {
			Some(x) => x,
			None => return Ok(()),
		};
		let mut had_separator = false;
		while let Some(x) = iter.next() {
			if let Some(sep) = self.1 {
				write!(f, "{}", sep)?;
			}
			write!(f, "{}", last)?;
			last = x;
			had_separator = true;
		}
		if !had_separator {
			if let Some(sep) = self.2 {
				write!(f, "{}", sep)?;
			}
		} else {
			if let Some(con) = self.3 {
				write!(f, "{}", con)?;
			}
		}
		write!(f, "{}", last)?;
		Ok(())
	}
}