1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
#![deny(missing_docs)]

//! A monotonic solver designed to be easy to use with Rust enums.
//!
//! This can be used to:
//!
//! - Research modeling of common sense for artificial intelligence
//! - Test inference rules when studying logic and languages
//! - Generate story plots
//! - Search and extract data
//!
//! The advantage of this library design is the ease-of-use for prototyping.
//! In a few hours, one can test a new idea for modeling common sense.
//!
//! Here is an example of program output (from "examples/drama.rs"):
//!
//! ```text
//! Bob murdered Alice with a gun
//! Bob shot Alice with a gun
//! Bob pulled the trigger of the gun
//! Bob aimed the gun at Alice
//! ```
//!
//! - Start: "Bob murdered Alice with a gun"
//! - Goal: "Bob aimed the gun at Alice".
//!
//! You can follow the reasoning step-by-step,
//! printed out as sentences in natural language or code.
//!
//!
//! When using this story plot for writing, you might do something like this:
//!
//! ```text
//! Bob picked up the gun and aimed it Alice.
//! "I hate you!" he cried.
//! "Wait, I can explain..." Alice raised her hands.
//! A loud bang.
//! Bob realized in the same moment what he did.
//! Something he never would believe if anyone had told him as a child.
//! He was now a murderer.
//! ```
//!
//! This particular program reasons backwards in time to take advantage of monotonic logic.
//! It helps to avoid explosive combinatorics of possible worlds.
//!
//! Technically, this solver can also be used when multiple contradicting facts lead
//! to the same goal.
//! The alternative histories, that do not lead to a goal, are erased when
//! the solver reduces the proof after finding a solution.
//!
//! ### Example
//!
//! Here is the full source code of a "examples/groceries.rs" that figures out which fruits
//! a person will buy from the available food and taste preferences.
//!
//! ```rust
//! extern crate monotonic_solver;
//!
//! use monotonic_solver::search;
//!
//! use std::collections::HashSet;
//!
//! use Expr::*;
//! use Fruit::*;
//! use Taste::*;
//! use Person::*;
//!
//! #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
//! pub enum Person {
//!     Hannah,
//!     Peter,
//!     Clara,
//! }
//!
//! #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
//! pub enum Taste {
//!     Sweet,
//!     Sour,
//!     Bitter,
//!     NonSour,
//! }
//!
//! impl Taste {
//!     fn likes(&self, fruit: Fruit) -> bool {
//!         *self == Sweet && fruit.is_sweet() ||
//!         *self == Sour && fruit.is_sour() ||
//!         *self == Bitter && fruit.is_bitter() ||
//!         *self == NonSour && !fruit.is_sour()
//!     }
//! }
//!
//! #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
//! pub enum Fruit {
//!     Apple,
//!     Grape,
//!     Lemon,
//!     Orange,
//! }
//!
//! impl Fruit {
//!     fn is_sweet(&self) -> bool {
//!         match *self {Orange | Apple => true, Grape | Lemon => false}
//!     }
//!
//!     fn is_sour(&self) -> bool {
//!         match *self {Lemon | Orange => true, Apple | Grape => false}
//!     }
//!
//!     fn is_bitter(&self) -> bool {
//!         match *self {Grape | Lemon => true, Apple | Orange => false}
//!     }
//! }
//!
//! #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
//! pub enum Expr {
//!     ForSale(Fruit),
//!     Preference(Person, Taste, Taste),
//!     Buy(Person, Fruit),
//! }
//!
//! fn infer(cache: &HashSet<Expr>, filter_cache: &HashSet<Expr>, story: &[Expr]) -> Option<Expr> {
//!     let can_add = |new_expr: &Expr| {
//!         !cache.contains(new_expr) &&
//!         !filter_cache.contains(new_expr)
//!     };
//!     for expr in story {
//!         if let &Preference(x, taste1, taste2) = expr {
//!             for expr2 in story {
//!                 if let &ForSale(y) = expr2 {
//!                     // Both tastes must be satisfied for the fruit.
//!                     if taste1.likes(y) && taste2.likes(y) {
//!                         let new_expr = Buy(x, y);
//!                         if can_add(&new_expr) {return Some(new_expr)};
//!                     }
//!                 }
//!             }
//!         }
//!     }
//!     None
//! }
//!
//! fn main() {
//!     let start = vec![
//!         ForSale(Orange),
//!         ForSale(Grape),
//!         ForSale(Apple),
//!         ForSale(Lemon),
//!         Preference(Hannah, Sour, Bitter),
//!         Preference(Peter, Sour, Sweet),
//!         Preference(Peter, NonSour, Bitter),
//!         Preference(Clara, NonSour, Sweet),
//!     ];
//!     let order_constraints = vec![
//!         // Peter likes grape better than orange.
//!         (Buy(Peter, Grape), Buy(Peter, Orange)),
//!     ];
//!
//!     // Look up what this person will buy.
//!     let person = Peter;
//!
//!     let res = search(
//!         &start,
//!         |expr| if let &Buy(x, y) = expr {if x == person {Some(y)} else {None}} else {None},
//!         1000, // max proof size.
//!         &[],
//!         &order_constraints,
//!         infer,
//!     );
//!     match res {
//!         Ok(ref res) | Err(ref res) => {
//!             for r in res {
//!                 println!("{:?}", r);
//!             }
//!         }
//!     }
//! }
//! ```
//!
//! When you run this program, it will output:
//!
//! ```text
//! Peter will buy:
//! - Grape
//! - Orange
//! ```
//!
//! This is what Peter will buy.
//!
//! Notice the following kinds of constraints:
//!
//! - People prefer some fruits above others
//! - A fruit can give multiple tasting experiences
//! - All tasting experiences must be satisfied for people to buy the fruit
//! - Not all kinds of fruits are available all the time
//! - People's preferences are combinations of tasting experiences
//! - People might change preferences over time
//!
//! When you start to code a new idea, you might only know vaguely
//! what the solver should do. Experiment!
//!
//! ### Design
//!
//! A monotonic solver is an automatic theorem prover that finds proofs using
//! forward-only search. The word "monotonic" means additional facts do not cancel
//! the truth value of previously added facts.
//!
//! This theorem prover is designed to work AST (Abstract Syntax Tree)
//! described with Rust enums.
//! The API is low level to allow precise control over performance,
//! by taking advantage of `HashSet` cache for inferred facts and filtering.
//!
//! - `solve_and_reduce` is most commonly used, because it first finds a proof
//! and then removes all facts that are inferred but irrelevant.
//! - `solve` is used to show exhaustive search for facts, for e.g. debugging.
//!
//! The API is able to simplify the proof without knowing anything explicit
//! about the rules, because it reasons counter-factually afterwards by modifying the filter.
//! After finding a solution, it tests each fact one by one, by re-solving the problem, starting with the latest added facts and moving to the beginning, to solve the implicit dependencies.
//! All steps in the new solution must exist in the old solution.
//! Since this can happen many times, it is important to take advantage of the cache.
//!
//! Each fact can only be added once to the solution.
//! It is therefore not necessary a good algorithm to use on long chains of events.
//! A more applicable area is modeling of common sense for short activities.
//!
//! This is the recommended way of using this library:
//!
//! 1. Model common sense for a restricted domain of reasoning
//! 2. Wrap the solver and constraints in an understandable programming interface
//!
//! The purpose is use a handful of facts to infer a few additional facts.
//! In many applications, such additional facts can be critical,
//! because they might seem so obvious to the user that they are not even mentioned.
//!
//! It can also be used to speed up productivity when serial thinking is required.
//! Human brains are not that particularly good at this kind of reasoning, at least not compared to a computer.
//!
//!
//! The challenge is to encode the rules required to make the computer an efficient reasoner.
//! This is why this library focuses on ease-of-use in a way that is familiar to Rust programmers, so multiple designs can be tested and compared with short iteration cycles.
//!
//! ### Usage
//!
//! The solver requires 5 things:
//!
//! 1. A list of start facts.
//! 2. A list of goal facts.
//! 3. A list of filtered facts.
//! 4. A list of order-constraints.
//! 5. A function pointer to the inference algorithm.
//!
//! Start facts are the initial conditions that trigger the search through rules.
//!
//! Goal facts decides when the search terminates.
//!
//! Filtered facts are blocked from being added to the solution.
//! This can be used as feedback to the algorithm when a wrong assumption is made.
//!
//! Order-constraints are used when facts represents events.
//! It is a list of tuples of the form `(A, B)` which controls the ordering of events.
//! The event `B` is added to the internal filter temporarily until event `A`
//! has happened.
//!
//! The search requires 6 things (similar to solver except no goal is required):
//!
//! 1. A list of start facts.
//! 2. A matching pattern to extract data.
//! 3. A maximum size of proof to avoid running out of memory.
//! 4. A list of filtered facts.
//! 5. A list of order-constraints.
//! 6. A function pointer to the inference algorithm.
//!
//! It is common to set up the inference algorithm in this pattern:
//!
//! ```ignore
//! fn infer(cache: &HashSet<Expr>, filter_cache: &HashSet<Expr>, story: &[Expr]) -> Option<Expr> {
//!     let can_add = |new_expr: &Expr| {
//!         !cache.contains(new_expr) &&
//!         !filter_cache.contains(new_expr)
//!     };
//!
//!     let places = &[
//!         University, CoffeeBar
//!     ];
//!
//!     for expr in story {
//!         if let &HadChild {father, mother, ..} = expr {
//!             let new_expr = Married {man: father, woman: mother};
//!             if can_add(&new_expr) {return Some(new_expr);}
//!         }
//!
//!         if let &Married {man, woman} = expr {
//!             let new_expr = FellInLove {man, woman};
//!             if can_add(&new_expr) {return Some(new_expr);}
//!         }
//!
//!         ...
//!     }
//!     None
//! }
//! ```
//!
//! The `can_add` closure checks whether the fact is already inferred.
//! It is also common to create lists of items to iterate over,
//! and use it in combination with the cache to improve performance of lookups.

use std::hash::Hash;
use std::collections::HashSet;

/// Solves without reducing.
pub fn solve<T: Clone + PartialEq + Eq + Hash>(
    start: &[T],
    goal: &[T],
    max_size: Option<usize>,
    filter: &[T],
    order_constraints: &[(T, T)],
    infer: fn(cache: &HashSet<T>, filter_cache: &HashSet<T>, story: &[T]) -> Option<T>
) -> Result<Vec<T>, Vec<T>> {
    let mut cache = HashSet::new();
    for s in start {
        cache.insert(s.clone());
    }
    let mut filter_cache: HashSet<T> = HashSet::new();
    for f in filter {
        filter_cache.insert(f.clone());
    }
    let mut res: Vec<T> = start.into();
    loop {
        if goal.iter().all(|e| res.iter().any(|f| e == f)) {
            break;
        }
        if let Some(n) = max_size {
            if res.len() >= n {return Err(res)};
        }

        // Modify filter to prevent violation of order-constraints.
        let mut added_to_filter = vec![];
        for (i, &(ref a, ref b)) in order_constraints.iter().enumerate() {
            if !cache.contains(a) && !filter_cache.contains(b) {
                added_to_filter.push(i);
            }
        }
        for &i in &added_to_filter {
            filter_cache.insert(order_constraints[i].1.clone());
        }

        let expr = if let Some(expr) = infer(&cache, &filter_cache, &res) {
            expr
        } else {
            return Err(res);
        };
        res.push(expr.clone());
        cache.insert(expr);

        // Revert filter.
        for &i in &added_to_filter {
            filter_cache.remove(&order_constraints[i].1);
        }
    }
    Ok(res)
}

/// Solves and reduces the proof to those steps that are necessary.
pub fn solve_and_reduce<T: Clone + PartialEq + Eq + Hash>(
    start: &[T],
    goal: &[T],
    mut max_size: Option<usize>,
    filter: &[T],
    order_constraints: &[(T, T)],
    infer: fn(cache: &HashSet<T>, filter_cache: &HashSet<T>, story: &[T]) -> Option<T>
) -> Result<Vec<T>, Vec<T>> {
    let mut res = solve(start, goal, max_size, filter, order_constraints, infer)?;

    // Check that every step is necessary.
    max_size = Some(res.len());
    let mut new_filter: Vec<T> = filter.into();
    loop {
        let old_len = res.len();
        for i in (0..res.len()).rev() {
            if goal.iter().any(|e| e == &res[i]) {continue;}

            new_filter.push(res[i].clone());

            if let Ok(solution) = solve(start, goal, max_size, &new_filter, order_constraints, infer) {
                if solution.len() < res.len() &&
                   solution.iter().all(|e| res.iter().any(|f| e == f))
                {
                    max_size = Some(solution.len());
                    res = solution;
                    break;
                }
            }

            new_filter.pop();
        }

        if res.len() == old_len {break;}
    }

    Ok(res)
}

/// Searches for matches by a pattern.
///
/// - `pat` specifies the map and acceptance criteria
/// - `max_size` specifies the maximum size of proof
///
/// Returns `Ok` if all rules where exausted.
/// Returns `Err` if the maximum size of proof was exceeded.
pub fn search<T, F, U>(
    start: &[T],
    pat: F,
    max_size: usize,
    filter: &[T],
    order_constraints: &[(T, T)],
    infer: fn(cache: &HashSet<T>, filter_cache: &HashSet<T>, story: &[T]) -> Option<T>
) -> Result<Vec<U>, Vec<U>>
    where T: Clone + PartialEq + Eq + Hash,
          F: Fn(&T) -> Option<U>
{
    let mut cache = HashSet::new();
    for s in start {
        cache.insert(s.clone());
    }
    let mut filter_cache: HashSet<T> = HashSet::new();
    for f in filter {
        filter_cache.insert(f.clone());
    }
    let mut res: Vec<T> = start.into();
    let mut matches: Vec<U> = vec![];
    loop {
        if res.len() > max_size {break};

        // Modify filter to prevent violating of order-constraints.
        let mut added_to_filter = vec![];
        for (i, &(ref a, ref b)) in order_constraints.iter().enumerate() {
            if !cache.contains(a) && !filter_cache.contains(b) {
                added_to_filter.push(i);
            }
        }
        for &i in &added_to_filter {
            filter_cache.insert(order_constraints[i].1.clone());
        }

        let expr = if let Some(expr) = infer(&cache, &filter_cache, &res) {
            expr
        } else {
            return Ok(matches);
        };
        res.push(expr.clone());

        if let Some(val) = (pat)(&expr) {
            matches.push(val);
        }

        cache.insert(expr);

        // Revert filter.
        for &i in &added_to_filter {
            filter_cache.remove(&order_constraints[i].1);
        }

    }
    Err(matches)
}