1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
use std::cell::RefCell;
use std::collections::HashMap;
use std::rc::Rc;

use object::builtins::*;
use object::environment::*;
use object::{EvalError, Object};
use parser::ast::*;
use parser::lexer::token::{Token, TokenKind};

mod interpreter_test;

pub fn eval(node: Node, env: &Env) -> Result<Rc<Object>, EvalError> {
    match node {
        Node::Program(p) => eval_block_statements(&p.body, env),
        Node::Statement(statements) => eval_statement(&statements, env),
        Node::Expression(expression) => eval_expression(&expression, env),
    }
}

fn eval_block_statements(statements: &Vec<Statement>, env: &Env) -> Result<Rc<Object>, EvalError> {
    let mut result = Rc::new(Object::Null);
    for statement in statements {
        let val = eval_statement(statement, &Rc::clone(env))?;
        match *val {
            Object::ReturnValue(_) => return Ok(val),
            _ => {
                result = val;
            }
        }
    }

    return Ok(result);
}

fn eval_statement(statement: &Statement, env: &Env) -> Result<Rc<Object>, EvalError> {
    match statement {
        Statement::Expr(expr) => eval_expression(expr, env),
        Statement::Return(ReturnStatement { argument, .. }) => {
            let val = eval_expression(argument, env)?;
            return Ok(Rc::new(Object::ReturnValue(val)));
        }
        Statement::Let(Let { identifier: id, expr, .. }) => {
            let val = eval_expression(expr, &Rc::clone(env))?;
            let obj: Rc<Object> = Rc::clone(&val);
            if let TokenKind::IDENTIFIER { name } = &id.kind {
                env.borrow_mut().set(name.clone(), obj);
            }
            return Ok(Rc::new(Object::Null));
        }
    }
}

fn is_truthy(obj: &Object) -> bool {
    match obj {
        Object::Null => return false,
        Object::Boolean(false) => return false,
        _ => true,
    }
}

fn eval_expression(expression: &Expression, env: &Env) -> Result<Rc<Object>, EvalError> {
    match expression {
        Expression::LITERAL(literal) => eval_literal(literal, env),
        Expression::PREFIX(UnaryExpression { op, operand: expr, .. }) => {
            let right = eval_expression(expr, &Rc::clone(env))?;
            return eval_prefix(op, &right);
        }
        Expression::INFIX(BinaryExpression { op, left, right, .. }) => {
            let left = eval_expression(left, &Rc::clone(env))?;
            let right = eval_expression(right, &Rc::clone(env))?;
            return eval_infix(op, &left, &right);
        }
        Expression::IF(IF { condition, consequent, alternate, .. }) => {
            let condition = eval_expression(condition, &Rc::clone(env))?;
            if is_truthy(&condition) {
                eval_block_statements(&(consequent.body), env)
            } else {
                match alternate {
                    Some(alt) => eval_block_statements(&(alt.body), env),
                    None => Ok(Rc::new(Object::Null)),
                }
            }
        }
        Expression::IDENTIFIER(IDENTIFIER { name: id, .. }) => eval_identifier(&id, env),
        Expression::FUNCTION(FunctionDeclaration { params, body, .. }) => {
            return Ok(Rc::new(Object::Function(params.clone(), body.clone(), Rc::clone(env))));
        }
        Expression::FunctionCall(FunctionCall { callee, arguments, .. }) => {
            let func = eval_expression(callee, &Rc::clone(env))?;
            let args = eval_expressions(arguments, env)?;
            apply_function(&func, &args)
        }
        Expression::Index(Index { object: left, index, .. }) => {
            let literal = eval_expression(left, &Rc::clone(env))?;
            let index = eval_expression(index, env)?;
            eval_index_expression(&literal, &index)
        }
    }
}

fn eval_index_expression(left: &Rc<Object>, index: &Rc<Object>) -> Result<Rc<Object>, EvalError> {
    match (&**left, &**index) {
        (Object::Array(arr), Object::Integer(idx)) => match arr.get(*idx as usize) {
            Some(obj) => return Ok(Rc::clone(obj)),
            None => return Ok(Rc::new(Object::Null)),
        },
        (Object::Hash(map), key) => {
            if !(key.is_hashable()) {
                return Err(format!("not a valid hash key"));
            }

            match map.get(key) {
                Some(obj) => return Ok(Rc::clone(obj)),
                None => return Ok(Rc::new(Object::Null)),
            }
        }
        _ => return Err(format!("index operator not supported for {}", left)),
    }
}

fn apply_function(function: &Rc<Object>, args: &Vec<Rc<Object>>) -> Result<Rc<Object>, EvalError> {
    match &**function {
        Object::Function(params, body, env) => {
            let mut env = Environment::new_enclosed_environment(&env);

            params.iter().enumerate().for_each(|(i, param)| {
                env.set(param.name.clone(), args[i].clone());
            });

            let evaluated = eval_block_statements(&body.body, &Rc::new(RefCell::new(env)))?;
            return unwrap_return(evaluated);
        }
        Object::Builtin(b) => Ok(b(args.to_vec())),
        f => Err(format!("expected {} to be a function", f)),
    }
}

fn unwrap_return(obj: Rc<Object>) -> Result<Rc<Object>, EvalError> {
    if let Object::ReturnValue(val) = &*obj {
        Ok(Rc::clone(&val))
    } else {
        Ok(obj)
    }
}

fn eval_expressions(exprs: &Vec<Expression>, env: &Env) -> Result<Vec<Rc<Object>>, EvalError> {
    let mut list = Vec::new();
    for expr in exprs {
        let val = eval_expression(expr, &Rc::clone(env))?;
        list.push(val);
    }

    Ok(list)
}

fn eval_identifier(identifier: &str, env: &Env) -> Result<Rc<Object>, EvalError> {
    match env.borrow().get(identifier) {
        Some(obj) => Ok(obj.clone()),
        None => match BuiltIns.iter().find(|&&b| b.0 == identifier) {
            Some(obj) => Ok(Rc::new(Object::Builtin(obj.1))),
            None => Err(format!("unknown identifier {}", identifier)),
        },
    }
}

fn eval_prefix(op: &Token, right: &Object) -> Result<Rc<Object>, EvalError> {
    match op.kind {
        TokenKind::BANG => eval_prefix_bang(right),
        TokenKind::MINUS => eval_prefix_minus(right),
        _ => Err(format!("unknown prefix operator: {}", op)),
    }
}

fn eval_prefix_bang(expr: &Object) -> Result<Rc<Object>, EvalError> {
    match *expr {
        Object::Null => Ok(Rc::new(Object::Boolean(true))),
        Object::Boolean(b) => Ok(Rc::new(Object::Boolean(!b))),
        _ => Ok(Rc::new(Object::Boolean(false))),
    }
}

fn eval_prefix_minus(expr: &Object) -> Result<Rc<Object>, EvalError> {
    match *expr {
        Object::Integer(i) => Ok(Rc::from(Object::Integer(-i))),
        _ => Err(format!("can't apply prefix minus operator: {}", expr)),
    }
}

fn eval_infix(op: &Token, left: &Object, right: &Object) -> Result<Rc<Object>, EvalError> {
    match (left, right) {
        (Object::Integer(left), Object::Integer(right)) => {
            return eval_integer_infix(op, *left, *right);
        }
        (Object::Boolean(left), Object::Boolean(right)) => {
            return eval_boolean_infix(op, *left, *right);
        }
        (Object::String(left), Object::String(right)) => {
            return eval_string_infix(op, left.to_string(), right.to_string());
        }
        _ => Err(format!("eval infix error for op: {}, left: {}, right: {}", op, left, right)),
    }
}

fn eval_integer_infix(op: &Token, left: i64, right: i64) -> Result<Rc<Object>, EvalError> {
    let result = match &op.kind {
        TokenKind::PLUS => Object::Integer(left + right),
        TokenKind::MINUS => Object::Integer(left - right),
        TokenKind::ASTERISK => Object::Integer(left * right),
        TokenKind::SLASH => Object::Integer(left / right),
        TokenKind::LT => Object::Boolean(left < right),
        TokenKind::GT => Object::Boolean(left > right),
        TokenKind::EQ => Object::Boolean(left == right),
        TokenKind::NotEq => Object::Boolean(left != right),
        op => return Err(format!("Invalid infix operator {} for int", op)),
    };

    Ok(Rc::from(result))
}

fn eval_boolean_infix(op: &Token, left: bool, right: bool) -> Result<Rc<Object>, EvalError> {
    let result = match &op.kind {
        TokenKind::EQ => Object::Boolean(left == right),
        TokenKind::NotEq => Object::Boolean(left != right),
        op => return Err(format!("Invalid infix operator for int: {}", op)),
    };

    Ok(Rc::from(result))
}

fn eval_string_infix(op: &Token, left: String, right: String) -> Result<Rc<Object>, EvalError> {
    let result = match &op.kind {
        TokenKind::EQ => Object::Boolean(left == right),
        TokenKind::NotEq => Object::Boolean(left != right),
        TokenKind::PLUS => Object::String(format!("{}{}", left, right)),
        op => return Err(format!("Invalid infix {} operator for string", op)),
    };

    Ok(Rc::from(result))
}

fn eval_literal(literal: &Literal, env: &Env) -> Result<Rc<Object>, EvalError> {
    match literal {
        Literal::Integer(Integer { raw: i, .. }) => Ok(Rc::from(Object::Integer(*i))),
        Literal::Boolean(Boolean { raw: b, .. }) => Ok(Rc::from(Object::Boolean(*b))),
        Literal::String(StringType { raw: s, .. }) => Ok(Rc::from(Object::String(s.clone()))),
        Literal::Array(Array { elements, .. }) => {
            let list = eval_expressions(elements, env)?;
            return Ok(Rc::from(Object::Array(list)));
        }
        Literal::Hash(Hash { elements: map, .. }) => {
            let mut hash_map = HashMap::new();

            for (k, v) in map {
                let key = eval_expression(k, env)?;
                if !key.is_hashable() {
                    return Err(format!("key {} is not hashable", key));
                }
                let value = eval_expression(v, env)?;
                hash_map.insert(key, value);
            }

            return Ok(Rc::new(Object::Hash(hash_map)));
        } // l => return Err(format!("unknown literal: {}", *l))
    }
}