This page requires javascript to work
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
use std::collections::BTreeMap;
use std::rc::Rc;

use either::Either;

pub type Level = u32;

/// `Exp` in Mini-TT.
/// Expression language for Mini-TT.
///
/// $M,\ N,\ A,\ B ::=$
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum Expression {
    /// $0$
    Unit,
    /// $\textbf{1}$
    One,
    /// $\textsf{U}$,
    /// `Type`. Extended with levels.
    Type(Level),
    /// Empty file
    Void,
    /// $x$,
    /// `bla`
    Var(String),
    /// $\textsf{Sum} \ S$,
    /// `Sum { Bla x }`
    Sum(Branch),
    /// $\textsf{fun} \ S$,
    /// `split { Bla x => y }`
    Split(Branch),
    /// This is an extension to Mini-TT, `A ++ B`.
    Merge(Box<Self>, Box<Self>),
    /// $\Pi p : A. B$ or $A \rightarrow B$,
    /// `\Pi a: b. c` or `A -> B`
    Pi(Typed, Box<Self>),
    /// $\Sigma p : A. B$ or $A \times B$,
    /// `\Sigma a: b. c` or `A * B`
    Sigma(Typed, Box<Self>),
    /// $\lambda p. M$,
    /// `\lambda a. c`, the optional value is the type of the argument.<br/>
    /// This cannot be specified during parsing because it's used for generated intermediate values
    /// during type-checking.
    Lambda(Pattern, Option<AnonymousValue>, Box<Self>),
    /// $M.1$,
    /// `bla.1`
    First(Box<Self>),
    /// $M.2$,
    /// `bla.2`
    Second(Box<Self>),
    /// $M \ N$,
    /// `f a`
    Application(Box<Self>, Box<Self>),
    /// $M, N$,
    /// `a, b`
    Pair(Box<Self>, Box<Self>),
    /// $\textsf{c}\ M$, `Cons a`
    Constructor(String, Box<Self>),
    /// `const a = b`, this is an extension: a declaration whose type-signature is inferred.
    /// This is very similar to a `Declaration`.
    Constant(Pattern, Box<Self>, Box<Self>),
    /// $D; M$,
    /// `let bla` or `rec bla`
    Declaration(Box<Declaration>, Box<Self>),
}

/// Just a wrapper for a value but does not do `Eq` comparison.
/// This is an implementation detail and should not be noticed much when reading the source code.
#[derive(Debug, Clone)]
pub struct AnonymousValue {
    pub internal: Box<Value>,
}

impl AnonymousValue {
    pub fn new(value: Value) -> Self {
        Self {
            internal: Box::new(value),
        }
    }

    pub fn some(value: Value) -> Option<Self> {
        Some(Self::new(value))
    }
}

impl Eq for AnonymousValue {}

impl PartialEq<AnonymousValue> for AnonymousValue {
    fn eq(&self, _other: &Self) -> bool {
        true
    }
}

/// $S(M) ::= ()\ |\ (\textsf{c}\ M, S)$
pub type GenericBranch<T> = BTreeMap<String, Box<T>>;

/// $S ::= ()\ |\ (\textsf{c}\ M, S)$, Pattern matching branch.
pub type Branch = GenericBranch<Expression>;

/// This function name is mysterious, but I failed to find a better name. It's for converting a
/// `Branch` into a `CaseTree` by inserting the `context` to every `Case`s.
pub fn branch_to_righted(branch: Branch, context: Telescope) -> CaseTree {
    let mut case_tree: CaseTree = Default::default();
    for (name, expression) in branch.into_iter() {
        let case = GenericCase::new(Either::Right(*expression), context.clone());
        case_tree.insert(name, Box::new(case));
    }
    case_tree
}

/// $p:A$, Pattern with type explicitly specified.
/// This is just a helper struct.
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct Typed {
    pub pattern: Pattern,
    pub expression: Box<Expression>,
}

impl Typed {
    pub fn new(pattern: Pattern, expression: Expression) -> Self {
        Self {
            pattern,
            expression: Box::new(expression),
        }
    }

    pub fn destruct(self) -> (Pattern, Expression) {
        let pattern = self.pattern;
        let expression = *self.expression;
        (pattern, expression)
    }
}

/// `Val` in Mini-TT, value term.<br/>
/// Terms are either of canonical form or neutral form.
///
/// $u,v,t ::=$
#[derive(Debug, Clone)]
pub enum Value {
    /// $\lambda\ f$.
    /// Canonical form: lambda abstraction.
    Lambda(Closure),
    /// $0$.
    /// Canonical form: unit instance.
    Unit,
    /// $\textbf{1}$.
    /// Canonical form: unit type.
    One,
    /// $\textsf{U}$.
    /// Canonical form: type universe.
    Type(Level),
    /// $\Pi \ t\ g$.
    /// Canonical form: pi type (type for dependent functions).
    Pi(Box<Self>, Closure),
    /// $\Sigma \ t\ g$.
    /// Canonical form: sigma type (type for dependent pair).
    Sigma(Box<Self>, Closure),
    /// $u,v$.
    /// Canonical form: Pair value (value for sigma).
    Pair(Box<Self>, Box<Self>),
    /// $c \ t$.
    /// Canonical form: call to a constructor.
    Constructor(String, Box<Self>),
    /// $\textsf{fun}\ s$.
    /// Canonical form: case-split.
    Split(CaseTree),
    /// $\textsf{Sum}\ s$.
    /// Canonical form: sum type.
    Sum(CaseTree),
    /// $[k]$.
    /// Neutral form.
    Neutral(Neutral),
}

/// Generic definition for two kinds of neutral terms.
///
/// Implementing `Eq` because of `NormalExpression`.
///
/// $k(v) ::=$
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum GenericNeutral<Value: Clone> {
    /// $\textsf{x}_n$.
    /// Neutral form: stuck on a free variable.
    Generated(u32),
    /// $k\ v$.
    /// Neutral form: stuck on applying on a free variable.
    Application(Box<Self>, Box<Value>),
    /// $k.1$.
    /// Neutral form: stuck on trying to find the first element of a free variable.
    First(Box<Self>),
    /// $k.2$.
    /// Neutral form: stuck on trying to find the second element of a free variable.
    Second(Box<Self>),
    /// $s\ k$.
    /// Neutral form: stuck on trying to case-split a free variable.
    Split(
        GenericBranch<GenericCase<Either<Value, Expression>, Value>>,
        Box<Self>,
    ),
}

/// $k ::= k(v)$.
/// `Neut` in Mini-TT, neutral value.
pub type Neutral = GenericNeutral<Value>;

/// `Patt` in Mini-TT.
///
/// $p ::=$
#[derive(Debug, Clone, Ord, PartialOrd, Eq, PartialEq)]
pub enum Pattern {
    /// $p,p$,
    /// Pair pattern. This sounds like trivial and useless, but we can achieve mutual recursion by
    /// using this pattern.
    Pair(Box<Self>, Box<Self>),
    /// \_,
    /// Unit pattern, used for introducing anonymous definitions.
    Unit,
    /// $x$,
    /// Variable name pattern, the most typical pattern.
    Var(String),
}

/// `Decl` in Mini-TT.
/// $D ::= p:A=M\ |\ \textsf{rec}\ p:A=M$
///
/// It's supposed to be an `enum` because it can be rec or non-rec, but for
/// coding convenience I've made it a struct with a `bool` member
/// (`is_recursive`) to indicate whether it's recursive.
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct Declaration {
    /// $p$ in syntax.
    pub pattern: Pattern,
    /// This is an extension -- declarations can be prefixed with some parameters.
    pub prefix_parameters: Vec<Typed>,
    /// $A$ in syntax.
    pub signature: Expression,
    /// $M$ in syntax.
    pub body: Expression,
    /// Whether the $\textsf{rec}$ is present.
    pub is_recursive: bool,
}

impl Declaration {
    /// Constructor
    pub fn new(
        pattern: Pattern,
        prefix_parameters: Vec<Typed>,
        signature: Expression,
        body: Expression,
        is_recursive: bool,
    ) -> Self {
        Self {
            pattern,
            prefix_parameters,
            signature,
            body,
            is_recursive,
        }
    }

    /// Non-recursive declarations
    pub fn simple(
        pattern: Pattern,
        prefix_parameters: Vec<Typed>,
        signature: Expression,
        body: Expression,
    ) -> Self {
        Self::new(pattern, prefix_parameters, signature, body, false)
    }

    /// Recursive declarations
    pub fn recursive(
        pattern: Pattern,
        prefix_parameters: Vec<Typed>,
        signature: Expression,
        body: Expression,
    ) -> Self {
        Self::new(pattern, prefix_parameters, signature, body, true)
    }
}

/// Generic definition for two kinds of telescopes.<br/>
/// `Value` can be specialized with `Value` or `NormalExpression`.
///
/// Implementing `Eq` because of `NormalExpression`
// TODO: replace with Vec<enum {Dec, Var}> maybe?
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum GenericTelescope<Value: Clone> {
    /// $()$,
    /// Empty telescope.
    Nil,
    /// $\rho, p=D$,
    /// In Mini-TT, checked declarations are put here. However, it's not possible to store a
    /// recursive declaration as an `Expression` (which is a member of `Declaration`) here.
    ///
    /// The problem is quite complicated and can be reproduced by checking out 0.1.5 revision and
    /// type-check this code (`Type` was `U` and `Sum` was `sum` at that time):
    ///
    /// ```ignore
    /// rec nat : U = sum { Zero 1 | Suc nat };
    /// -- Inductive definition of nat
    ///
    /// let one : nat = Zero 0;
    /// let two : nat = Suc one;
    /// -- Unresolved reference
    /// ```
    UpDec(Rc<Self>, Declaration),
    /// $\rho, p=v$,
    /// Usually a local variable, introduced in your telescope
    UpVar(Rc<Self>, Pattern, Value),
}

pub type TelescopeRc<Value> = Rc<GenericTelescope<Value>>;

/// $\rho ::= \rho(v)$
/// `Rho` in Mini-TT, dependent context.
pub type Telescope = Rc<GenericTelescope<Value>>;

/// Just for simplifying constructing an `Rc`.
/// $\rho, p=v$
pub fn up_var_rc<Value: Clone>(
    me: TelescopeRc<Value>,
    pattern: Pattern,
    value: Value,
) -> TelescopeRc<Value> {
    Rc::new(GenericTelescope::UpVar(me, pattern, value))
}

/// Just for simplifying constructing an `Rc`.
/// $\rho, p=D$
pub fn up_dec_rc<Value: Clone>(
    me: TelescopeRc<Value>,
    declaration: Declaration,
) -> TelescopeRc<Value> {
    Rc::new(GenericTelescope::UpDec(me, declaration))
}

/// Because we can't `impl` a `Default` for `Rc`.
/// $()$
pub fn nil_rc<Value: Clone>() -> TelescopeRc<Value> {
    Rc::new(GenericTelescope::Nil)
}

/// `Clos` in Mini-TT.
///
/// $f,g ::=$
#[derive(Debug, Clone)]
pub enum Closure {
    /// $\lang \lambda p.M,\rho \rang$,
    /// `cl` in Mini-TT.<br/>
    /// Closure that does a pattern matching.
    ///
    /// Members: pattern, parameter type (optional), body expression and the captured scope.
    Abstraction(Pattern, Option<Box<Value>>, Expression, Box<Telescope>),
    /// This is not present in Mini-TT, thus an extension.<br/>
    /// Sometimes the closure is already an evaluated value.
    Value(Box<Value>),
    /// $f \circ c$
    /// `clCmp` in Mini-TT.<br/>
    /// Closure that was inside of a case-split.
    ///
    /// For example, in a definition:
    /// ```ignore
    /// f = split { TT a => bla };
    /// ```
    /// The part `TT a => bla` is a choice closure, where `Box<Self>` refers to the `a => bla` part
    /// and `TT` is the `String`.
    Choice(Box<Self>, String),
}

/// Generic definition for three kinds of case trees
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct GenericCase<Expression, Value: Clone> {
    pub expression: Expression,
    pub context: TelescopeRc<Value>,
}

impl<Expression, Value: Clone> GenericCase<Expression, Value> {
    pub fn new(expression: Expression, context: TelescopeRc<Value>) -> Self {
        Self {
            expression,
            context,
        }
    }
}

/// One single case in case trees.
pub type Case = GenericCase<Either<Value, Expression>, Value>;

/// $\lang S,\rho \rang$,
/// `SClos` in Mini-TT.<br/>
/// Case tree.
pub type CaseTree = GenericBranch<Case>;

impl GenericCase<Either<Value, Expression>, Value> {
    pub fn reduce_to_value(self) -> Value {
        let GenericCase {
            expression,
            context,
        } = self;
        expression.either(|l| l, |r| r.eval(context))
    }
}