This page requires javascript to work
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
use std::collections::BTreeMap;
use std::fmt::Display;
use std::rc::Rc;

use either::Either;

use crate::ast::*;

/// `NRho` in Mini-TT, normal form telescopes (contexts).
pub type NormalTelescope = Rc<GenericTelescope<NormalExpression>>;

pub type NormalCase = GenericCase<Either<NormalExpression, Expression>, NormalExpression>;

/// `NSClos` in Mini-TT, normal form closures.
pub type NormalCaseTree = GenericBranch<NormalCase>;

/// `NNeut` in Mini-TT, normal form neutral values.
pub type NormalNeutral = GenericNeutral<NormalExpression>;

/// `NExp` in Mini-TT, normal form expressions.<br/>
/// Deriving `Eq` so we can do comparison.
///
/// $E ::=$
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum NormalExpression {
    /// $\lambda \textsf{x}_i\  .\ E$
    Lambda(u32, Box<Self>),
    /// $E_1, E_2$
    Pair(Box<Self>, Box<Self>),
    /// $0$
    Unit,
    /// $\textbf{1}$
    One,
    /// $\textsf{U}$
    Type(Level),
    /// $\Pi \textsf{x}_i:E_1.E_2$
    Pi(Box<Self>, u32, Box<Self>),
    /// $\Sigma \textsf{x}_i:E_1.E_2$
    Sigma(Box<Self>, u32, Box<Self>),
    /// $c\ E$
    Constructor(String, Box<Self>),
    /// $\textsf{fun}\lang S,\alpha \rang$
    Split(NormalCaseTree),
    /// $\textsf{Sum}\lang S,\alpha \rang$
    Sum(NormalCaseTree),
    /// $[K]$
    Neutral(NormalNeutral),
}

/// `genV` in Mini-TT.
pub fn generate_value(id: u32) -> Value {
    use crate::ast::GenericNeutral as Neutral;
    Value::Neutral(Neutral::Generated(id))
}

/// Since all of `Value`, `Neutral` and `Telescope` have a read back function,
/// I extracted this common interface for them.
///
/// Implementing `Sized` to make the compiler happy.
pub trait ReadBack: Sized {
    /// Corresponding normal form type for the read-backable structures.<br/>
    /// This is needed because Rust does not support Higher-Kinded Types :(
    type NormalForm: Eq + Display;

    /// $$
    /// \begin{alignedat}{2}
    ///   & \textsf{R}_i (\lambda \ f) &&= \lambda \ \textsf{x}_i
    ///      \ . \ \textsf{R}\_{i+1} (\textsf{inst}\ f [ \textsf{x}\_i ]) \\\\
    ///   & \textsf{R}_i (u,v) &&= (\textsf{R}_i u,\textsf{R}_i v) \\\\
    ///   & \textsf{R}_i 0 &&= 0 \\\\
    ///   & \textsf{R}_i (c\ v) &&= c \ (\textsf{R}_i v) \\\\
    ///   & \textsf{R}_i (\textsf{fun}\lang S,\rho\rang) &&= \textsf{fun}\lang S,
    ///      \textsf{R}_i \rho\rang \\\\
    ///   & \textsf{R}_i (\textsf{Sum}\lang S,\rho\rang) &&= \textsf{Sum}\lang S,
    ///      \textsf{R}_i \rho\rang \\\\
    ///   & \textsf{R}_i \textsf{U} &&= \textsf{U} \\\\
    ///   & \textsf{R}_i \textbf{1} &&= \textbf{1} \\\\
    ///   & \textsf{R}_i (\Pi\ t\ g) &&= \Pi \textsf{x}_i : \textsf{R}\_i \ t
    ///      \ . \ \textsf{R}\_{i+1} (\textsf{inst}\ g [ \textsf{x}\_i ]) \\\\
    ///   & \textsf{R}_i (\Sigma\ t\ g) &&= \Sigma \textsf{x}_i : \textsf{R}\_i \ t
    ///      \ . \ \textsf{R}\_{i+1} (\textsf{inst}\ g [ \textsf{x}\_i ]) \\\\
    ///   & \textsf{R}_i [k] &&= [\textsf{R}\_i\ k] \\\\
    ///   & && \\\\
    ///   & \textsf{R}_i \textsf{x}\_j &&= \textsf{x}\_j \\\\
    ///   & \textsf{R}_i (k\ v) &&= (\textsf{R}_i\ k) (\textsf{R}_i\ v) \\\\
    ///   & \textsf{R}_i (k.1) &&= (\textsf{R}_i\ k) .1 \\\\
    ///   & \textsf{R}_i (k.2) &&= (\textsf{R}_i\ k) .2 \\\\
    ///   & \textsf{R}_i (\lang S,\rho \rang\ k) &&=
    ///      \lang S,\textsf{R}\_i \rho \rang (\textsf{R}_i\ k) \\\\
    ///   & && \\\\
    ///   & \textsf{R}_i (\rho,p=v) &&= \textsf{R}_i\ \rho,p=\textsf{R}\_i\ v \\\\
    ///   & \textsf{R}_i (\rho,D) &&= \textsf{R}_i\ \rho,D \\\\
    ///   & \textsf{R}_i () &&= ()
    /// \end{alignedat}
    /// $$
    /// Interface for `rbV`, `rbN` and `rbRho` in Mini-TT.
    fn read_back(self, index: u32) -> Self::NormalForm;

    /// Sometimes you don't want to pass an argument, and let me do this for you :)
    fn read_back_please(self) -> Self::NormalForm {
        self.read_back(0)
    }

    /// `eqNf` in Mini-TT, but returning normal forms for error reporting.<br/>
    /// Whether two structures are equivalent up to normal form.
    fn normal(index: u32, me: Self, other: Self) -> (Self::NormalForm, Self::NormalForm) {
        let me_read_back = me.read_back(index);
        let other_read_back = other.read_back(index);
        (me_read_back, other_read_back)
    }
}

impl ReadBack for Value {
    type NormalForm = NormalExpression;

    /// $$
    /// \begin{alignedat}{2}
    ///   & \textsf{R}_i (\lambda \ f) &&= \lambda \ \textsf{x}_i
    ///      \ . \ \textsf{R}\_{i+1} (\textsf{inst}\ f [ \textsf{x}\_i ]) \\\\
    ///   & \textsf{R}_i (u,v) &&= (\textsf{R}_i u,\textsf{R}_i v) \\\\
    ///   & \textsf{R}_i 0 &&= 0 \\\\
    ///   & \textsf{R}_i (c\ v) &&= c \ (\textsf{R}_i v) \\\\
    ///   & \textsf{R}_i (\textsf{fun}\lang S,\rho\rang) &&= \textsf{fun}\lang S,
    ///      \textsf{R}_i \rho\rang \\\\
    ///   & \textsf{R}_i (\textsf{Sum}\lang S,\rho\rang) &&= \textsf{Sum}\lang S,
    ///      \textsf{R}_i \rho\rang \\\\
    ///   & \textsf{R}_i \textsf{U} &&= \textsf{U} \\\\
    ///   & \textsf{R}_i \textbf{1} &&= \textbf{1} \\\\
    ///   & \textsf{R}_i (\Pi\ t\ g) &&= \Pi \textsf{x}_i : \textsf{R}\_i \ t
    ///      \ . \ \textsf{R}\_{i+1} (\textsf{inst}\ g [ \textsf{x}\_i ]) \\\\
    ///   & \textsf{R}_i (\Sigma\ t\ g) &&= \Sigma \textsf{x}_i : \textsf{R}\_i \ t
    ///      \ . \ \textsf{R}\_{i+1} (\textsf{inst}\ g [ \textsf{x}\_i ]) \\\\
    ///   & \textsf{R}_i [k] &&= [\textsf{R}\_i\ k]
    /// \end{alignedat}
    /// $$
    /// `rbV` in Mini-TT.
    fn read_back(self, index: u32) -> Self::NormalForm {
        use crate::check::read_back::NormalExpression::*;
        match self {
            Value::Lambda(closure) => {
                let closure = closure
                    .instantiate(generate_value(index))
                    .read_back(index + 1);
                Lambda(index, Box::new(closure))
            }
            Value::Unit => Unit,
            Value::One => One,
            Value::Type(level) => Type(level),
            Value::Pi(input, output) => {
                let output = output
                    .instantiate(generate_value(index))
                    .read_back(index + 1);
                Pi(Box::new(input.read_back(index)), index, Box::new(output))
            }
            Value::Sigma(first, second) => {
                let second = second
                    .instantiate(generate_value(index))
                    .read_back(index + 1);
                Sigma(Box::new(first.read_back(index)), index, Box::new(second))
            }
            Value::Pair(first, second) => Pair(
                Box::new(first.read_back(index)),
                Box::new(second.read_back(index)),
            ),
            Value::Constructor(name, body) => Constructor(name, Box::new(body.read_back(index))),
            Value::Split(case_tree) => Split(read_back_branches(index, case_tree)),
            Value::Sum(constructors) => Sum(read_back_branches(index, constructors)),
            Value::Neutral(neutral) => Neutral(neutral.read_back(index)),
        }
    }
}

fn read_back_branches(index: u32, branches: CaseTree) -> NormalCaseTree {
    let mut read_back_constructors = BTreeMap::new();
    for (name, case) in branches.into_iter() {
        read_back_constructors.insert(name, Box::new(case.read_back(index)));
    }
    read_back_constructors
}

impl ReadBack for Case {
    type NormalForm = NormalCase;

    fn read_back(self, index: u32) -> Self::NormalForm {
        Self::NormalForm::new(
            self.expression.map_left(|l| l.read_back(index)),
            self.context.read_back(index),
        )
    }
}

impl ReadBack for &GenericTelescope<Value> {
    type NormalForm = NormalTelescope;

    /// $$
    /// \begin{alignedat}{2}
    ///   & \textsf{R}_i (\rho,p=v) &&= \textsf{R}_i\ \rho,p=\textsf{R}\_i\ v \\\\
    ///   & \textsf{R}_i (\rho,D) &&= \textsf{R}_i\ \rho,D \\\\
    ///   & \textsf{R}_i () &&= ()
    /// \end{alignedat}
    /// $$
    /// `rbRho` in Mini-TT.
    fn read_back(self, index: u32) -> Self::NormalForm {
        use crate::ast::GenericTelescope::*;
        match self {
            Nil => Rc::new(Nil),
            UpDec(context, declaration) => {
                Rc::new(UpDec(context.read_back(index), declaration.clone()))
            }
            UpVar(context, pattern, val) => Rc::new(UpVar(
                context.read_back(index),
                pattern.clone(),
                val.clone().read_back(index),
            )),
        }
    }
}

impl ReadBack for Neutral {
    type NormalForm = NormalNeutral;

    /// $$
    /// \begin{alignedat}{2}
    ///   & \textsf{R}_i \textsf{x}\_j &&= \textsf{x}\_j \\\\
    ///   & \textsf{R}_i (k\ v) &&= (\textsf{R}_i\ k) (\textsf{R}_i\ v) \\\\
    ///   & \textsf{R}_i (k.1) &&= (\textsf{R}_i\ k) .1 \\\\
    ///   & \textsf{R}_i (k.2) &&= (\textsf{R}_i\ k) .2 \\\\
    ///   & \textsf{R}_i (\lang S,\rho \rang\ k) &&=
    ///     \lang S,\textsf{R}\_i \rho \rang (\textsf{R}_i\ k)
    /// \end{alignedat}
    /// $$
    /// `rbN` in Mini-TT.
    fn read_back(self, index: u32) -> Self::NormalForm {
        use crate::ast::GenericNeutral::*;
        match self {
            Generated(index) => Generated(index),
            Application(function, argument) => Application(
                Box::new(function.read_back(index)),
                Box::new(argument.read_back(index)),
            ),
            First(neutral) => First(Box::new(neutral.read_back(index))),
            Second(neutral) => Second(Box::new(neutral.read_back(index))),
            Split(case_tree, body) => Split(
                read_back_branches(index, case_tree),
                Box::new(body.read_back(index)),
            ),
        }
    }
}