1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
// Copyright 2016 Kyle Mayes
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! A micro-benchmarking library.
//!
//! `microbench` uses linear regression to estimate the execution time of code segments. For
//! example, the following table might represent data collected by `microbench` about a code
//! segment.
//!
//! | Iterations | Time (ns) |
//! |------------|-----------|
//! | 1          | 19        |
//! | 2          | 25        |
//! | 3          | 37        |
//! | 4          | 47        |
//! | 5          | 56        |
//!
//! `microbench` of course takes many more than 5 samples and the number of iterations grows
//! geometrically rather than linearly, but the concept remains the same. After collecting data like
//! this, `microbench` uses ordinary least squares (OLS) linear regression to estimate the actual
//! execution time of the code segment. Using OLS with the above data would yield an estimated
//! execution time of `9.6` nanoseconds with a goodness of fit (R²) of `0.992`.
//!
//! # Example
//!
//! ```
//! use std::time::{Duration};
//! use microbench::{self, Options};
//!
//! fn fibonacci_iterative(n: u64) -> u64 {
//!     let (mut x, mut y, mut z) = (0, 1, 1);
//!     for _ in 0..n { x = y; y = z; z = x + y; }
//!     x
//! }
//!
//! fn fibonacci_recursive(n: u64) -> u64 {
//!     if n < 2 {
//!         n
//!     } else {
//!         fibonacci_recursive(n - 2) + fibonacci_recursive(n - 1)
//!     }
//! }
//!
//! let options = Options::default().maximum(Duration::new(1, 0));
//! microbench::bench(&options, "iterative_16", || fibonacci_iterative(16));
//! microbench::bench(&options, "recursive_16", || fibonacci_recursive(16));
//! ```
//!
//! Example output:
//!
//! ```console
//! iterative_16 ... bench:                  273.757 ns/iter (0.999 R²)
//! recursive_16 ... bench:                9_218.530 ns/iter (0.999 R²)
//! ```

#![feature(test)]

#![warn(missing_copy_implementations, missing_debug_implementations, missing_docs)]

#![cfg_attr(feature="clippy", feature(plugin))]
#![cfg_attr(feature="clippy", plugin(clippy))]
#![cfg_attr(feature="clippy", warn(clippy))]
#![cfg_attr(feature="clippy", allow(new_without_default_derive))]

extern crate test;
extern crate time;

use std::time::{Duration};

//================================================
// Structs
//================================================

// Analysis ______________________________________

/// An analysis of a set of timing data.
#[derive(Copy, Clone, Debug)]
pub struct Analysis {
    /// The y-intercept of the linear regression estimator.
    pub alpha: f64,
    /// The slope of the linear regression estimator.
    pub beta: f64,
    /// The goodness of fit of the linear regression estimator.
    pub r2: f64,
}

// GeometricSequence _____________________________

/// Generates unique values from a geometric sequence.
#[derive(Copy, Clone, Debug)]
pub struct GeometricSequence {
    current: f64,
    factor: f64,
}

impl GeometricSequence {
    //- Constructors -----------------------------

    /// Constructs a new `GeometricSequence`.
    pub fn new(start: u64, factor: f64) -> Self {
        GeometricSequence { current: start as f64, factor: factor }
    }
}

impl Iterator for GeometricSequence {
    type Item = u64;

    fn next(&mut self) -> Option<Self::Item> {
        let start = self.current as u64;
        while self.current as u64 == start { self.current *= self.factor; }
        Some(start)
    }
}

// Measurement ___________________________________

/// A measurement of the execution time of a function.
#[derive(Copy, Clone, Debug)]
pub struct Measurement {
    /// The number of times the function was called.
    pub iterations: u64,
    /// The number of nanoseconds that elapsed while calling the function.
    pub nanoseconds: u64,
}

impl Measurement {
    //- Constructors -----------------------------

    /// Constructs a new `Measurement`.
    pub fn new(iterations: u64, nanoseconds: u64) -> Self {
        Measurement { iterations: iterations, nanoseconds: nanoseconds }
    }
}

// Options _______________________________________

/// Benchmarking options.
#[derive(Copy, Clone, Debug)]
pub struct Options {
    factor: f64,
    maximum: u64,
}

impl Default for Options {
    fn default() -> Options {
        Options { factor: 1.01, maximum: 5_000_000_000 }
    }
}

impl Options {
    //- Consumers --------------------------------

    /// Sets the geometric growth factor for sample iterations.
    ///
    /// **Default:** `1.01`
    pub fn factor(mut self, factor: f64) -> Self {
        self.factor = factor;
        self
    }

    /// Sets the maximum amount of time a benchmark will run for.
    ///
    /// **Default:** `Duration::new(5, 0)`
    pub fn maximum(mut self, maximum: Duration) -> Self {
        self.maximum = (maximum.as_secs() * 1_000_000_000) + maximum.subsec_nanos() as u64;
        self
    }
}

// Stopwatch _____________________________________

/// A high-precision stopwatch.
#[derive(Clone, Copy, Debug)]
pub struct Stopwatch {
    start: u64,
}

impl Stopwatch {
    //- Constructors -----------------------------

    /// Constructs a new `Stopwatch`.
    pub fn new() -> Self {
        Stopwatch { start: time::precise_time_ns() }
    }

    //- Accessors --------------------------------

    /// Returns the elapsed nanoseconds since this stopwatch was constructed or reset.
    pub fn elapsed(&self) -> u64 {
        time::precise_time_ns() - self.start
    }

    //- Mutators ---------------------------------

    /// Resets this stopwatch.
    pub fn reset(&mut self) {
        self.start = time::precise_time_ns();
    }
}

//================================================
// Functions
//================================================

fn display_thousands(number: f64) -> String {
    let mut integral = String::new();
    let mut counter = 0;
    for digit in (number as u64).to_string().chars().rev() {
        if counter == 3 {
            integral.insert(0, '_');
            counter = 0;
        }
        counter += 1;
        integral.insert(0, digit);
    }
    let fractional = format!("{}", number.fract());
    format!("{}.{:.3}", integral, &fractional[2..])
}

fn kahan_sum<I>(iterator: I) -> f64 where I: Iterator<Item=f64> {
    let (mut sum, mut correction) = (0.0, 0.0);
    for f in iterator {
        let y = f - correction;
        let t = sum + y;
        correction = (t - sum) - y;
        sum = t;
    }
    sum
}

fn mean<I>(iterator: I) -> f64 where I: ExactSizeIterator<Item=f64> {
    let len = iterator.len();
    kahan_sum(iterator) / len as f64
}

/// Analyzes the supplied timing data and returns the resulting analysis.
pub fn analyze(measurements: &[Measurement]) -> Analysis {
    let xmean = mean(measurements.iter().map(|m| m.iterations as f64));
    let ymean = mean(measurements.iter().map(|m| m.nanoseconds as f64));

    // Ordinary least squares linear regression.
    let numerator = measurements.iter().map(|m| {
        (m.iterations as f64 - xmean) * (m.nanoseconds as f64 - ymean)
    }).sum::<f64>();
    let denominator = measurements.iter().map(|m| {
        (m.iterations as f64 - xmean).powf(2.0)
    }).sum::<f64>();
    let beta = numerator / denominator;
    let alpha = ymean - (beta * xmean);
    let estimator = |x: u64| (beta * x as f64) + alpha;

    // Ordinary least squares goodness of fit.
    let numerator = measurements.iter().map(|m| {
        (estimator(m.iterations) - ymean).powf(2.0)
    }).sum::<f64>();
    let denominator = measurements.iter().map(|m| {
        (m.nanoseconds as f64 - ymean).powf(2.0)
    }).sum::<f64>();
    let r2 = numerator / denominator;

    Analysis { alpha: alpha, beta: beta, r2: r2 }
}

/// Benchmarks the supplied function and prints the results.
pub fn bench<T, F>(options: &Options, name: &str, f: F) where F: FnMut() -> T {
    let analysis = analyze(&measure(options, f));
    let prefix = format!("{} ... bench:", name);
    let beta = display_thousands(analysis.beta);
    println!("{:<32} {:>15} ns/iter ({:.3} R²)", prefix, beta, analysis.r2);
}

/// Measures the execution time of the supplied function and returns the resulting timing data.
pub fn measure<T, F>(options: &Options, mut f: F) -> Vec<Measurement> where F: FnMut() -> T {
    let mut measurements = vec![];
    let mut sequence = GeometricSequence::new(1, options.factor);
    let total = Stopwatch::new();
    while total.elapsed() < options.maximum {
        let iterations = sequence.next().unwrap();
        let sample = Stopwatch::new();
        for _ in 0..iterations { retain(f()); }
        measurements.push(Measurement::new(iterations, sample.elapsed()));
    }
    measurements
}

/// A function that prevents the optimizer from eliminating the supplied value.
pub fn retain<T>(value: T) -> T {
    test::black_box(value)
}