micro_metrics - Performance Monitoring Framework
Basic performance monitoring and metrics collection framework
This crate provides a foundation for collecting and exporting performance metrics from the Semantic Cartan Matrix system. It offers basic timing, data collection, and JSON export capabilities.
โ Implemented Features
- MetricsCollector: Basic metrics collection with timing support
- Timer: Cross-platform timing functionality
- JsonExporter: Export metrics to JSON format for dashboards
- DashboardData: Basic data structures for visualization
- HeatmapData: Data format for attention/correlation heatmaps
โ Not Yet Implemented
- Real-time Streaming: No WebSocket or live updates
- Prometheus Integration: No Prometheus export functionality
- Advanced Analytics: No drift detection or regression analysis
- System Metrics: No CPU/memory monitoring integration
- Dashboard Server: No actual web dashboard implementation
๐ฆ Installation
Add this to your Cargo.toml
:
[]
= { = "../micro_metrics" }
๐๏ธ Core Components
MetricsCollector
Basic metrics collection and aggregation:
use ;
// Create collector (basic implementation)
let collector = new;
// Record basic metrics (implementation varies)
// Note: Actual API may differ from this example
Timer
Cross-platform timing functionality:
use ;
// Create and use timer
let timer = new;
let timing_info = timer.measure;
println!;
JSON Export
Export metrics in JSON format:
use ;
let exporter = new;
// Export basic metrics to JSON
let json_report = exporter.export_metrics?;
println!;
Dashboard Data
Basic data structures for visualization:
use ;
// Create dashboard-compatible data
let dashboard_data = DashboardData ;
// Create heatmap data for attention visualization
let heatmap = HeatmapData ;
๐ Current Implementation Status
What Works
- Basic metrics collection structures
- Simple timing functionality
- JSON serialization of basic data
- Integration with micro_core types
- no_std compatibility (limited features)
What's Limited
- No complex aggregations or analytics
- No real-time data streaming
- No advanced visualizations
- No system resource monitoring
- No performance regression detection
๐ง Configuration
Feature Flags
[]
= ["std"]
= ["serde/std", "serde_json/std"]
= [] # System monitoring (not implemented)
= [] # Prometheus export (not implemented)
= [] # Web dashboard (not implemented)
Basic Usage
use ;
// Initialize collector
let mut collector = new;
// Time operations
let timer = start;
perform_neural_network_inference;
let duration = timer.stop;
// Store timing result
collector.record_timing;
// Export for analysis
let json_metrics = collector.export_json?;
๐ Planned Architecture
The following describes intended functionality, not current implementation:
Advanced Metrics Collection
// PLANNED API (not fully implemented)
use ;
let mut metrics = new;
metrics.record_latency;
metrics.record_throughput;
let drift_tracker = new;
let regression_detector = new;
Real-time Dashboard
// PLANNED API (not implemented)
use ;
let dashboard = new;
dashboard.start.await?;
let streamer = new;
streamer.stream_to_dashboard.await?;
Prometheus Integration
// PLANNED API (not implemented)
use PrometheusExporter;
let exporter = new;
exporter.register_counter;
exporter.export_to_gateway.await?;
๐งช Testing
# Run basic tests
# Test JSON export functionality
# Test system metrics (when implemented)
โ ๏ธ Current Limitations
- Basic Implementation: Most functionality is minimal
- No Real-time Features: No streaming or live updates
- Limited Analytics: No advanced statistical analysis
- No Dashboard: No actual web interface
- Platform Support: Limited cross-platform monitoring
- Performance: Not optimized for high-frequency metrics
๐ Implementation Roadmap
Phase 1: Core Functionality
- Complete basic metrics collection
- Add comprehensive timing support
- Implement proper JSON export
- Add basic statistical aggregations
Phase 2: Advanced Features
- Real-time metrics streaming
- Prometheus export integration
- System resource monitoring
- Performance regression detection
Phase 3: Dashboard & Visualization
- Web-based dashboard implementation
- Real-time chart updates
- Attention matrix heatmaps
- Historical data analysis
๐ Examples
Current examples would demonstrate:
- Basic timing and metrics collection
- JSON export for external analysis
- Integration with neural network operations
Planned examples:
- Real-time dashboard setup
- Prometheus monitoring integration
- Advanced performance analysis
๐ค Contributing
Priority areas for contribution:
- Core Implementation: Complete basic metrics functionality
- Real-time Features: Add streaming and live updates
- Dashboard: Implement web-based monitoring interface
- Testing: Add comprehensive test coverage
- Performance: Optimize for high-frequency data collection
๐ License
Licensed under either of:
- Apache License, Version 2.0 (LICENSE-APACHE)
- MIT License (LICENSE-MIT)
at your option.
๐ Related Crates
micro_core
: Core types being monitoredmicro_cartan_attn
: Attention mechanisms with metricsmicro_routing
: Routing performance monitoringmicro_swarm
: High-level orchestration metrics
Part of the rUv-FANN Semantic Cartan Matrix system - Basic metrics collection for neural network monitoring.