1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
use cgmath::EuclideanSpace;
use cgmath::Point3;
use iterator::FaceHalfedgeIterator;
use iterator::FaceIterator;
use mesh::Id;
use mesh::Mesh;

/// Derives Clone to allow initializing a vec with the vec![value; length]
/// macro.
#[derive(Clone)]
struct FaceData {
    /// The center point of the original face in the input mesh.
    average_of_points: Point3<f32>,

    /// The new vertex in the output mesh.
    generated_vertex_id: Id,
}

/// Derives Clone to allow initializing a vec with the vec![value; length]
/// macro.
#[derive(Clone)]
struct EdgeData {
    mid_point: Point3<f32>,
    generated_vertex_id: Id,
}

// A vertex Id in the output mesh.
// This is a simple id wrapper so we derive value semantics.
#[derive(Copy, Clone)]
struct VertexData {
    generated_vertex_id: Id,
}

impl VertexData {
    pub fn new() -> Self {
        VertexData {
            generated_vertex_id: 0,
        }
    }
}

fn face_data_mut<'a>(
    input: &Mesh,
    id: Id,
    face_data_set: &'a mut Vec<Option<FaceData>>,
    output: &mut Mesh,
) -> &'a mut FaceData {
    if face_data_set[id].is_some() {
        return face_data_set[id].as_mut().unwrap();
    }
    let average_of_points = input.face_center(id);
    face_data_set[id] = Some(FaceData {
        average_of_points,
        generated_vertex_id: output.add_vertex(average_of_points),
    });
    face_data_set[id].as_mut().unwrap()
}

fn edge_data_mut<'a>(
    input: &Mesh,
    id: Id,
    face_data_set: &mut Vec<Option<FaceData>>,
    edge_data_set: &'a mut Vec<Option<EdgeData>>,
    output: &mut Mesh,
) -> &'a mut EdgeData {
    let id = input.peek_same_halfedge(id);
    if edge_data_set[id].is_some() {
        return edge_data_set[id].as_mut().unwrap();
    }
    let mid_point = input.edge_center(id);
    let (
        halfedge_face_id,
        opposite_face_id,
        next_halfedge_vertex_id,
        start_vertex_position,
    ) = {
        let halfedge = input.halfedge(id).unwrap();
        (
            halfedge.face,
            input.halfedge(halfedge.opposite).unwrap().face,
            input.halfedge(halfedge.next).unwrap().vertex,
            input.vertex(halfedge.vertex).unwrap().position,
        )
    };
    let stop_vertex_position =
        input.vertex(next_halfedge_vertex_id).unwrap().position;
    let f1_data_average =
        face_data_mut(input, halfedge_face_id, face_data_set, output)
            .average_of_points;
    let f2_data_average =
        face_data_mut(input, opposite_face_id, face_data_set, output)
            .average_of_points;
    let center = Point3::centroid(&[
        f1_data_average,
        f2_data_average,
        start_vertex_position,
        stop_vertex_position,
    ]);
    edge_data_set[id] = Some(EdgeData {
        mid_point,
        generated_vertex_id: output.add_vertex(center),
    });
    edge_data_set[id].as_mut().unwrap()
}

/// A context for subdivision, providing temporary memory buffers.
pub struct CatmullClarkSubdivider<'a> {
    /// Maps HALFEDGE ID in the input mesh to EdgeData.
    edge_data_set: Vec<Option<EdgeData>>,

    /// Maps FACE ID in the INPUT mesh to FaceData.
    face_data_set: Vec<Option<FaceData>>,

    /// Destination mesh
    output: Mesh,

    /// Source mesh
    input: &'a Mesh,

    // Temporary and reusable memory buffer for vertex_data_mut().
    tmp_avg_of_faces: Vec<Point3<f32>>,

    // Temporary and reusable memory buffer for vertex_data_mut().
    tmp_avg_of_edge_mids: Vec<Point3<f32>>,

    /// Maps VERTEX ID in the INPUT mesh to VertexData.
    vertex_data_set: Vec<Option<VertexData>>,
}

impl<'a> CatmullClarkSubdivider<'a> {
    /// Constructs a CatmullClarkSubdivider.
    ///
    /// This function will preallocate as much memory as it can predict is
    /// necessary for the subdivision.
    pub fn new(input: &'a Mesh) -> Self {
        let mut output = Mesh::new();

        // Each halfedge produce 3 new
        let halfedge_prediction = input.halfedge_count * 4;
        output.halfedges.reserve(halfedge_prediction);

        output.vertices.reserve(
            input.vertex_count         // No vertices are removed
            + input.halfedge_count / 2 // Each edge produce a new point
            + input.face_count, // Each face produce a new point
        );
        output.faces.reserve(
            input.face_count * 4, // Optimize for quads
        );

        // Is this prediction true for all meshes? If false, this is probably
        // still ok since the worst-case here is degraded performance and
        // overallocation.
        //
        // Insertion in this collection is at the time of writing the single
        // largest time sink that sticks out when profiling subdivision.
        //
        // TODO: Try to replace this with Vec or some other efficient lookup.
        output.edges.reserve(halfedge_prediction / 2);

        // mesh.rs is using 1-based indexing so we need + 1 for the length of
        // each Vec below. It is also not enough to use input.halfedge_count,
        // the count represents "living" elements and may be less than the
        // largest id (index).
        //
        // Using Vecs here may consume more memory compared to hash maps when
        // the source mesh has been heavily edited with many deletions, but
        // should be faster in most cases.
        let face_data_set = vec![None; input.faces.len() + 1];
        let edge_data_set = vec![None; input.halfedges.len() + 1];
        let vertex_data_set = vec![None; input.vertices.len() + 1];

        CatmullClarkSubdivider {
            input,
            output,
            tmp_avg_of_edge_mids: Vec::new(),
            tmp_avg_of_faces: Vec::new(),
            face_data_set,
            edge_data_set,
            vertex_data_set,
        }
    }

    pub fn generate(mut self) -> Mesh {
        for face_id in FaceIterator::new(self.input) {
            let face_vertex_id = face_data_mut(
                &self.input,
                face_id,
                &mut self.face_data_set,
                &mut self.output,
            ).generated_vertex_id;
            let face_halfedge = self.input.face(face_id).unwrap().halfedge;
            let face_halfedge_id_vec =
                FaceHalfedgeIterator::new(self.input, face_halfedge).into_vec();
            for halfedge_id in face_halfedge_id_vec {
                let (next_halfedge_id, vertex_id) = {
                    let halfedge = self.input.halfedge(halfedge_id).unwrap();
                    let next_halfedge_id = halfedge.next;
                    let next_halfedge_start =
                        self.input.halfedge(next_halfedge_id).unwrap().vertex;
                    (next_halfedge_id, next_halfedge_start)
                };
                let e1_vertex_id =
                    self.edge_data_mut(halfedge_id).generated_vertex_id;
                let e2_vertex_id =
                    self.edge_data_mut(next_halfedge_id).generated_vertex_id;
                let vertex_generated_id =
                    self.vertex_data_mut(vertex_id).generated_vertex_id;
                let added_face_id = self.output.add_face();
                let mut added_halfedges = [
                    (self.output.add_halfedge(), face_vertex_id),
                    (self.output.add_halfedge(), e1_vertex_id),
                    (self.output.add_halfedge(), vertex_generated_id),
                    (self.output.add_halfedge(), e2_vertex_id),
                ];
                for &(added_halfedge_id, added_vertex_id) in
                    added_halfedges.iter()
                {
                    {
                        let vert = self.output
                            .vertex_mut(added_vertex_id)
                            .unwrap();
                        if !vert.halfedges.contains(&added_halfedge_id) {
                            vert.halfedges.push(added_halfedge_id);
                        }
                    }
                    self.output.halfedge_mut(added_halfedge_id).unwrap().face =
                        added_face_id;
                    self.output
                        .halfedge_mut(added_halfedge_id)
                        .unwrap()
                        .vertex = added_vertex_id;
                }
                self.output.face_mut(added_face_id).unwrap().halfedge =
                    added_halfedges[0].0;
                for i in 0..added_halfedges.len() {
                    let first = added_halfedges[i].0;
                    let second =
                        added_halfedges[(i + 1) % added_halfedges.len()].0;
                    self.output.link_halfedges(first, second);
                }
            }
        }
        self.output
    }

    /// Helps to reduce the syntax noise when a Self is available. Splits Self
    /// into multiple mutable borrows.
    fn edge_data_mut(&mut self, halfedge_id: Id) -> &EdgeData {
        edge_data_mut(
            &self.input,
            halfedge_id,
            &mut self.face_data_set,
            &mut self.edge_data_set,
            &mut self.output,
        )
    }

    /// Get or create a vertex in the new mesh.
    /// The vertex_id paremeter refers to a vertex in the input mesh.
    /// The returned VertexData (vertex id) refers to the output mesh.
    fn vertex_data_mut(&mut self, vertex_id: Id) -> VertexData {
        if let Some(data) = self.vertex_data_set[vertex_id] {
            return data;
        }
        self.tmp_avg_of_faces.clear();
        self.tmp_avg_of_edge_mids.clear();
        let vertex = self.input.vertex(vertex_id).unwrap();
        for halfedge_id in vertex.halfedges.iter() {
            let halfedge_face_id =
                self.input.halfedge(*halfedge_id).unwrap().face;
            self.tmp_avg_of_faces.push(
                face_data_mut(
                    &self.input,
                    halfedge_face_id,
                    &mut self.face_data_set,
                    &mut self.output,
                ).average_of_points,
            );
            self.tmp_avg_of_edge_mids.push(
                edge_data_mut(
                    &self.input,
                    *halfedge_id,
                    &mut self.face_data_set,
                    &mut self.edge_data_set,
                    &mut self.output,
                ).mid_point,
            );
        }
        let barycenter = Point3::centroid(&self.tmp_avg_of_faces);
        let average_of_edge = Point3::centroid(&self.tmp_avg_of_edge_mids);
        let position = (((average_of_edge * 2.0) + barycenter.to_vec())
            + (vertex.position.to_vec()
                * ((self.tmp_avg_of_faces.len() as i32 - 3).abs() as f32)))
            / (self.tmp_avg_of_faces.len() as f32);
        let mut data = VertexData::new();
        data.generated_vertex_id = self.output.add_vertex(position);
        self.vertex_data_set[vertex_id] = Some(data);
        data
    }
}

pub trait Subdivide {
    fn subdivide(&self) -> Self;
}

impl Subdivide for Mesh {
    fn subdivide(&self) -> Self {
        CatmullClarkSubdivider::new(self).generate()
    }
}