1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
use std::prelude::v1::*;

use crate::architecture::{ArchitectureObj, Endianess};
use crate::error::{Error, Result, *};
use crate::mem::memory_view::*;
use crate::mem::{
    mem_data::*,
    virt_translate::{
        DirectTranslate, VirtualTranslate, VirtualTranslate2, VirtualTranslate3,
        VirtualTranslation, VirtualTranslationCallback, VirtualTranslationFail,
        VirtualTranslationFailCallback,
    },
    MemoryView, PhysicalMemory, PhysicalMemoryMetadata,
};
use crate::types::{umem, Address, PhysicalAddress};
use cglue::tuple::*;

use bumpalo::{collections::Vec as BumpVec, Bump};
use cglue::callback::FromExtend;

/// The VirtualDma struct provides a default implementation to access virtual memory
/// from user provided [`PhysicalMemory`] and [`VirtualTranslate2`] objects.
///
/// This struct implements [`MemoryView`] and allows the user to access the virtual memory of a process.
pub struct VirtualDma<T, V, D> {
    phys_mem: T,
    vat: V,
    proc_arch: ArchitectureObj,
    translator: D,
    arena: Bump,
}

impl<T: PhysicalMemory, D: VirtualTranslate3> VirtualDma<T, DirectTranslate, D> {
    /// Constructs a `VirtualDma` object from user supplied architectures and DTB.
    /// It creates a default `VirtualTranslate2` object using the `DirectTranslate` struct.
    ///
    /// If you want to use a cache for translating virtual to physical memory
    /// consider using the `VirtualDma::with_vat()` function and supply your own `VirtualTranslate2` object.
    ///
    /// # Examples
    ///
    /// Constructing a `VirtualDma` object with a given dtb and using it to read:
    /// ```
    /// use memflow::types::Address;
    /// use memflow::architecture::x86::x64;
    /// use memflow::mem::{PhysicalMemory, VirtualTranslate2, MemoryView, VirtualDma};
    /// use memflow::cglue::Fwd;
    ///
    /// fn read(phys_mem: Fwd<&mut impl PhysicalMemory>, vat: &mut impl VirtualTranslate2, dtb: Address, read_addr: Address) {
    ///     let arch = x64::ARCH;
    ///     let translator = x64::new_translator(dtb);
    ///
    ///     let mut virt_mem = VirtualDma::new(phys_mem, arch, translator);
    ///
    ///     let mut addr = 0u64;
    ///     virt_mem.read_into(read_addr, &mut addr).unwrap();
    ///     println!("addr: {:x}", addr);
    ///     # assert_eq!(addr, 0x00ff_00ff_00ff_00ff);
    /// }
    /// # use memflow::dummy::{DummyMemory, DummyOs};
    /// # use memflow::types::size;
    /// # use memflow::mem::DirectTranslate;
    /// # use memflow::cglue::ForwardMut;
    /// # let mem = DummyMemory::new(size::mb(4));
    /// # let (mut os, dtb, virt_base) = DummyOs::new_and_dtb(mem, size::mb(2), &[255, 0, 255, 0, 255, 0, 255, 0]);
    /// # let mut vat = DirectTranslate::new();
    /// # read(os.forward_mut(), &mut vat, dtb, virt_base);
    /// ```
    pub fn new(phys_mem: T, arch: impl Into<ArchitectureObj>, translator: D) -> Self {
        Self {
            phys_mem,
            vat: DirectTranslate::new(),
            proc_arch: arch.into(),
            translator,
            arena: Bump::new(),
        }
    }
}

impl<T: PhysicalMemory, V: VirtualTranslate2, D: VirtualTranslate3> VirtualDma<T, V, D> {
    /// This function constructs a `VirtualDma` instance with a user supplied `VirtualTranslate2` object.
    /// It can be used when working with cached virtual to physical translations such as a Tlb.
    ///
    /// # Examples
    ///
    /// Constructing a `VirtualDma` object with VAT and using it to read:
    /// ```
    /// use memflow::types::Address;
    /// use memflow::architecture::x86::x64;
    /// use memflow::mem::{PhysicalMemory, VirtualTranslate2, MemoryView, VirtualDma};
    /// use memflow::cglue::Fwd;
    ///
    /// fn read(phys_mem: Fwd<&mut impl PhysicalMemory>, vat: impl VirtualTranslate2, dtb: Address, read_addr: Address) {
    ///     let arch = x64::ARCH;
    ///     let translator = x64::new_translator(dtb);
    ///
    ///     let mut virt_mem = VirtualDma::with_vat(phys_mem, arch, translator, vat);
    ///
    ///     let mut addr = 0u64;
    ///     virt_mem.read_into(read_addr, &mut addr).unwrap();
    ///     println!("addr: {:x}", addr);
    ///     # assert_eq!(addr, 0x00ff_00ff_00ff_00ff);
    /// }
    /// # use memflow::dummy::{DummyMemory, DummyOs};
    /// # use memflow::types::size;
    /// # use memflow::mem::DirectTranslate;
    /// # use memflow::cglue::ForwardMut;
    /// # let mem = DummyMemory::new(size::mb(4));
    /// # let (mut os, dtb, virt_base) = DummyOs::new_and_dtb(mem, size::mb(2), &[255, 0, 255, 0, 255, 0, 255, 0]);
    /// # let mut vat = DirectTranslate::new();
    /// # read(os.forward_mut(), &mut vat, dtb, virt_base);
    /// ```
    pub fn with_vat(phys_mem: T, arch: impl Into<ArchitectureObj>, translator: D, vat: V) -> Self {
        Self {
            phys_mem,
            vat,
            proc_arch: arch.into(),
            translator,
            arena: Bump::new(),
        }
    }

    /// Returns the architecture of the system. The system architecture is used for virtual to physical translations.
    pub fn sys_arch(&self) -> ArchitectureObj {
        self.translator.arch()
    }

    /// Returns the architecture of the process for this context. The process architecture is mainly used to determine pointer sizes.
    pub fn proc_arch(&self) -> ArchitectureObj {
        self.proc_arch
    }

    /// Replaces current process architecture with a new one.
    pub fn set_proc_arch(&mut self, new_arch: ArchitectureObj) -> ArchitectureObj {
        core::mem::replace(&mut self.proc_arch, new_arch)
    }

    /// Returns the Directory Table Base of this process..
    pub fn translator(&self) -> &D {
        &self.translator
    }

    /// Replace current translator with a new one.
    pub fn set_translator(&mut self, new_translator: D) -> D {
        core::mem::replace(&mut self.translator, new_translator)
    }

    /// A wrapper around `read_addr64` and `read_addr32` that will use the pointer size of this context's process.
    /// TODO: do this in virt mem
    pub fn read_addr(&mut self, addr: Address) -> PartialResult<Address> {
        match self.proc_arch.bits() {
            64 => self.read_addr64(addr),
            32 => self.read_addr32(addr),
            _ => Err(PartialError::Error(Error(
                ErrorOrigin::VirtualMemory,
                ErrorKind::InvalidArchitecture,
            ))),
        }
    }

    /// Consumes this VirtualDma object, returning the underlying memory and vat objects
    pub fn into_inner(self) -> (T, V) {
        (self.phys_mem, self.vat)
    }

    pub fn mem_vat_pair(&mut self) -> (&mut T, &mut V) {
        (&mut self.phys_mem, &mut self.vat)
    }

    pub fn phys_mem(&mut self) -> &mut T {
        &mut self.phys_mem
    }

    pub fn phys_mem_ref(&self) -> &T {
        &self.phys_mem
    }

    pub fn vat(&mut self) -> &mut V {
        &mut self.vat
    }
}

impl<T, V, D> Clone for VirtualDma<T, V, D>
where
    T: Clone,
    V: Clone,
    D: Clone,
{
    fn clone(&self) -> Self {
        Self {
            phys_mem: self.phys_mem.clone(),
            vat: self.vat.clone(),
            proc_arch: self.proc_arch,
            translator: self.translator.clone(),
            arena: Bump::new(),
        }
    }
}

#[allow(clippy::needless_option_as_deref)]
impl<T: PhysicalMemory, V: VirtualTranslate2, D: VirtualTranslate3> MemoryView
    for VirtualDma<T, V, D>
{
    fn read_raw_iter<'a>(
        &mut self,
        MemOps {
            inp,
            out,
            mut out_fail,
        }: ReadRawMemOps,
    ) -> Result<()> {
        self.arena.reset();

        let mut translation = BumpVec::with_capacity_in(inp.size_hint().0, &self.arena);
        let phys_mem = &mut self.phys_mem;

        self.vat.virt_to_phys_iter(
            phys_mem,
            &self.translator,
            inp,
            &mut translation.from_extend(),
            &mut (&mut |(_, CTup3(_, meta, buf)): (_, _)| {
                opt_call(out_fail.as_deref_mut(), CTup2(meta, buf))
            })
                .into(),
        );

        MemOps::with_raw(translation.into_iter(), out, out_fail, |data| {
            phys_mem.phys_read_raw_iter(data)
        })
    }

    fn write_raw_iter(
        &mut self,
        MemOps {
            inp,
            out,
            mut out_fail,
        }: WriteRawMemOps,
    ) -> Result<()> {
        self.arena.reset();

        let mut translation = BumpVec::with_capacity_in(inp.size_hint().0, &self.arena);
        let phys_mem = &mut self.phys_mem;

        self.vat.virt_to_phys_iter(
            phys_mem,
            &self.translator,
            inp,
            &mut translation.from_extend(),
            &mut (&mut |(_, CTup3(_, meta, buf)): (_, _)| {
                opt_call(out_fail.as_deref_mut(), CTup2(meta, buf))
            })
                .into(),
        );

        MemOps::with_raw(translation.into_iter(), out, out_fail, |data| {
            phys_mem.phys_write_raw_iter(data)
        })
    }

    fn metadata(&self) -> MemoryViewMetadata {
        let PhysicalMemoryMetadata {
            max_address,
            real_size,
            readonly,
            ..
        } = self.phys_mem.metadata();

        MemoryViewMetadata {
            max_address,
            real_size,
            readonly,
            little_endian: self.proc_arch.endianess() == Endianess::LittleEndian,
            arch_bits: self.proc_arch.bits(),
        }
    }
}

impl<T: PhysicalMemory, V: VirtualTranslate2, D: VirtualTranslate3> VirtualTranslate
    for VirtualDma<T, V, D>
{
    fn virt_to_phys_list(
        &mut self,
        addrs: &[VtopRange],
        mut out: VirtualTranslationCallback,
        mut out_fail: VirtualTranslationFailCallback,
    ) {
        self.vat.virt_to_phys_iter(
            &mut self.phys_mem,
            &self.translator,
            addrs
                .iter()
                .map(|&CTup2(address, size)| CTup3(address, address, size)),
            &mut (&mut |CTup3(a, b, c): CTup3<PhysicalAddress, Address, umem>| {
                out.call(VirtualTranslation {
                    in_virtual: b,
                    size: c,
                    out_physical: a,
                })
            })
                .into(),
            &mut (&mut |(_e, CTup3(from, _, size))| {
                out_fail.call(VirtualTranslationFail { from, size })
            })
                .into(),
        )
    }
}