1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
#![cfg_attr(feature = "bench", feature(test))]

#[cfg(feature = "bench")]
extern crate test;


use byteorder::{WriteBytesExt, ReadBytesExt, NativeEndian};
use serde::{Serialize,Deserialize};
use serde_json;
use std::borrow::Cow;


///!This crate will provide a extremely fast deserialization of dynamic data structures with big
///fields. This is very MMAP friendly since it only parses the header and does not parse the fields
///until requested.
///**Easy example:**
///```rust
///use membuffer::{MemBufferWriter,MemBufferReader};
///
///fn main() {
///  //Creates a new empty MemBufferWriter
///  let mut writer = MemBufferWriter::new();
///  
///  //Adds this as immutable field, no more changing after adding it
///  //The first entry is the key and must be a type that implements Into<i32>
///  writer.add_entry("Very long value");
///
///  //Creates a Vec<u8> out of all the collected data
///  let result = writer.finalize();
///
///  //Try to read the created vector. Will return an error if the CRC32 does not fit
///  //or if the header is not terminated. Will panic if the memory is corrupted beyond recognition
///  let reader = MemBufferReader::new(&result).unwrap();
///
///  //Will return an error if the selected key could not be found or if the value types dont match
///  assert_eq!(reader.load_entry::<&str>(0).unwrap(), "Very long value");
///}
///```

///Refers to a position given to every deserialize and serialize operation, can be used to store
///data if one does not need to store data in the payload e. g. Field smaller than 8 Bytes
pub struct Position {
    pub offset: i32,
    pub length: i32,
}


///Refers to the different types when implementing your own types use an own enum like
///this:
///```rust
///use membuffer::MemBufferTypes;
///enum MyImplementedTypes {
/// MyOwnType0 = MemBufferTypes::LastPreDefienedValue as isize,
/// MyOwnType1,
/// MyOwnType2
///}
///```
#[derive(Debug)]
pub enum MemBufferTypes {
    Text,
    Integer32,
    VectorU8,
    VectorU64,
    MemBuffer,
    LastPreDefienedValue
}

impl Into<i32> for MemBufferTypes {
    fn into(self) -> i32 {
        self as i32
    }
}


struct InternPosition {
    pub pos: Position,
    pub variable_type: i32,
}




#[derive(Debug, Clone)]
pub enum MemBufferError {
    FieldTypeError(i32,i32),
    WrongFormat,
}

impl<'a> std::fmt::Display for MemBufferError {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        match self {
            MemBufferError::FieldTypeError(x,y) => write!(f,"Memory buffer error: Field has type {} and not requested type {}",x.to_string(),y.to_string()),
            MemBufferError::WrongFormat => write!(f,"Memory buffer error: Reached end of slice before end of header, memory seems to be corrupted")
        }
    }
}


pub trait MemBufferDeserialize<'a,T> {
    fn from_mem_buffer(pos: &Position, mem: &'a [u8]) -> Result<T,MemBufferError> where Self: Sized;
}

impl<'a> MemBufferDeserialize<'a,&'a str> for &str {
    fn from_mem_buffer(pos: &Position, mem: &'a [u8]) -> Result<&'a str,MemBufferError> {
        //This should always be safe as long as the saved string was utf-8 encoded and no one
        //messed with the file on disk.
        unsafe{ Ok(std::str::from_utf8_unchecked(&mem[pos.offset as usize..(pos.offset+pos.length) as usize])) }
    }
}

impl<'a> MemBufferDeserialize<'a,i32> for i32 {
    fn from_mem_buffer(pos: &Position, _: &'a [u8]) -> Result<i32,MemBufferError> {
        //Fast load integer since no memory is required to store integer
        Ok(pos.offset)
    }
}

impl<'a> MemBufferDeserialize<'a,&'a [u8]> for &[u8] {
    fn from_mem_buffer(pos: &Position, mem: &'a [u8]) -> Result<&'a [u8],MemBufferError> {
        Ok(&mem[pos.offset as usize..(pos.offset+pos.length) as usize])
    }
}

impl<'a> MemBufferDeserialize<'a,&'a [u64]> for &[u64] {
    fn from_mem_buffer(pos: &Position, mem: &'a [u8]) -> Result<&'a [u64],MemBufferError> {
        let val: *const u8 = mem[pos.offset as usize..].as_ptr();
        let cast_memory = val.cast::<u64>();
        //Divide by eight as u64 should be 8 bytes on any system
        let mem_length = pos.length>>3;

        //This should always be safe as long as no one messed with the serialized data
        Ok(unsafe{std::slice::from_raw_parts(cast_memory, mem_length as usize)})
    }
}

impl<'a> MemBufferDeserialize<'a,MemBufferReader<'a>> for MemBufferReader<'a> {
    fn from_mem_buffer(pos: &Position, mem: &'a [u8]) -> Result<MemBufferReader<'a>,MemBufferError> {
        let reader = MemBufferReader::new(&mem[pos.offset as usize..(pos.offset+pos.length) as usize])?;
        Ok(reader)
    }
}

///The reader which is used for reading the memory area produced by the writer, **Important notice:
///The reader uses the native endian of the system used therefore sending between big endian and
///little endian systems wont work**
///```rust
///use membuffer::{MemBufferWriter,MemBufferReader};
///
///let mut data = MemBufferWriter::new();
///data.add_entry("Add some data to save to file or send over the network");
///let data_vec = data.finalize();
/////The reader is type sensitive
///let reader = MemBufferReader::new(&data_vec).unwrap();
/////We load the first entry, try not to get this mixed up
///assert_eq!(reader.load_entry::<&str>(0).unwrap(),"Add some data to save to file or send over the network");
///```
pub struct MemBufferReader<'a> {
    offsets: &'a [InternPosition],
    data: &'a [u8]
}

impl<'a> MemBufferReader<'a> {
    ///Deserialize data from a buffer to an i32 integer
    pub fn deserialize_i32_from(mut buffer: &[u8]) -> i32 {
        buffer.read_i32::<NativeEndian>().unwrap()
    }

    pub fn len(&self) -> usize {
        self.offsets.len()
    }

    pub fn payload_len(&self) -> usize {
        self.data.len()
    }
    
    ///Internal load function this is needed to enable loading nested MemBufferWriters which does
    ///not implement the Deserialize trait
    fn intern_load_entry<X: MemBufferDeserialize<'a,X>>(&self, key: usize, expected_type: i32) -> Result<X,MemBufferError> {
        let entry = &self.offsets[key];
        let is_type = entry.variable_type;
        if is_type != expected_type {
            return Err(MemBufferError::FieldTypeError(is_type,expected_type));
        }
        return X::from_mem_buffer(&entry.pos, self.data);
    }

    ///Load one entry with the given type, expecting the serializable trait as well to determine
    ///the integer type, when doing polymorphismus of structures use the same integer for multiple
    ///types
    pub fn load_entry<X: MemBufferDeserialize<'a,X> + MemBufferSerialize>(&self,key: usize) -> Result<X,MemBufferError> {
        self.intern_load_entry(key.into(), X::get_mem_buffer_type())
    }

    ///Loads an entry stored with serde_json and returns it.
    pub fn load_serde_entry<T: Deserialize<'a>>(&self,key: usize) -> Result<T,MemBufferError> {
        let string : &str = self.load_entry(key.into())?;
        Ok(serde_json::from_str(string).unwrap())
    }

    ///Loads a nested MembufferWriter as reader
    pub fn load_recursive_reader(&self, key: usize) -> Result<MemBufferReader<'a>,MemBufferError> {
        self.intern_load_entry(key.into(), MemBufferWriter::get_mem_buffer_type())
    }


    ///Creates a new memory format reader from the given memory slice, as the readed values are
    ///borrowed from the memory slice the reader cannot outlive the memory it borrows from
    pub fn new(val: &'a [u8]) -> Result<MemBufferReader<'a>,MemBufferError> {
        if val.len() < 8 {
            return Err(MemBufferError::WrongFormat);
        }

        let vec_len = MemBufferReader::deserialize_i32_from(val) as usize;
        let start = vec_len*std::mem::size_of::<InternPosition>()+4;
        if val.len() < start+4 {
            return Err(MemBufferError::WrongFormat);
        }

        let magic = MemBufferReader::deserialize_i32_from(&val[start..]);
        if magic != 0x7AFECAFE {
            return Err(MemBufferError::WrongFormat);
        }
        unsafe {
        Ok(MemBufferReader {
            offsets: std::slice::from_raw_parts(val[4..].as_ptr().cast::<InternPosition>(),vec_len),
            data: &val[start+4..]
        })
        }
    }
}

impl<'a> std::fmt::Debug for MemBufferReader<'a> {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f,"Found memory buffer with payload size {}",self.data.len())
    }
}


///The Writer class which sets up the schema and writes it into the memory when finished building
pub struct MemBufferWriter {
    offsets: Vec<InternPosition>,
    data: Vec<u8>
}

pub trait MemBufferSerialize {
    fn to_mem_buffer<'a>(&'a self, pos: &mut Position) -> std::borrow::Cow<'a,[u8]>;
    fn get_mem_buffer_type() -> i32; 
}

impl MemBufferSerialize for &str {
    fn to_mem_buffer<'a>(&'a self, _ : &mut Position) -> std::borrow::Cow<'a,[u8]> {
        std::borrow::Cow::Borrowed(self.as_bytes())
    }

    fn get_mem_buffer_type() -> i32 {
        MemBufferTypes::Text.into()
    }
}

impl MemBufferSerialize for &String {
    fn to_mem_buffer<'a>(&'a self, _ : &mut Position) -> Cow<'a,[u8]> {
        Cow::Borrowed(self.as_bytes())
    }

    fn get_mem_buffer_type() -> i32 {
        MemBufferTypes::Text.into()
    }
}

impl MemBufferSerialize for i32 {
    fn to_mem_buffer<'a>(&'a self, pos: &mut Position) -> Cow<'a, [u8]> {
        pos.offset = *self;
        Cow::Borrowed(&[])
    }

    fn get_mem_buffer_type() -> i32 {
        MemBufferTypes::Integer32.into()
    }
}

impl MemBufferSerialize for &[u8] {
    fn to_mem_buffer<'a>(&'a self, _: &mut Position) -> Cow<'a, [u8]> {
        Cow::Borrowed(self)
    }

    fn get_mem_buffer_type() -> i32 {
        MemBufferTypes::VectorU8.into()
    }
}

impl MemBufferSerialize for &[u64] {
    fn to_mem_buffer<'a>(&'a self, _: &mut Position) -> Cow<'a,[u8]> {
        let val: *const u64 = self.as_ptr();
        let cast_memory = val.cast::<u8>();
        let mem_length = self.len() * std::mem::size_of::<u64>();
        Cow::Borrowed(unsafe{ std::slice::from_raw_parts(cast_memory, mem_length)})
    }

    fn get_mem_buffer_type() -> i32 {
        MemBufferTypes::VectorU64.into()
    }
}


impl MemBufferSerialize for MemBufferWriter {
    fn to_mem_buffer<'a>(&'a self, _ : &mut Position) -> Cow<'a,[u8]> {
        let ret = self.finalize();
        Cow::Owned(ret)
    }

    fn get_mem_buffer_type() -> i32 {
        MemBufferTypes::MemBuffer.into()
    }
}

impl MemBufferWriter {
    ///Creates a new empty memory format writer
    pub fn new() -> MemBufferWriter {
        MemBufferWriter {
            offsets: Vec::new(),
            data: Vec::new()
        }
    }

    ///Create a new Membuffer writer from the given memory, this will enable the writer to add
    ///more data to the previous version, to do so the writer does a full reload of the memory
    ///therefore it is an expensive operation if the structure adding fields to is huge.
    ///```rust
    ///use membuffer::{MemBufferWriter,MemBufferReader};
    ///
    ///let mut value = MemBufferWriter::new();
    ///value.add_entry("Hello");
    ///value.add_entry("World");
    ///
    ///let data = value.finalize();
    ///
    /////Save data to disk or anything like that
    /////Then load it again and add more data by doing this
    ///
    ///let mut writer_adder = MemBufferWriter::from(&data).unwrap();
    /////The writer creates a new Vector to hold the data therefore no mutable reference to data is
    /////stored
    ///writer_adder.add_entry("Damn I forgot");
    ///
    ///let new_data = writer_adder.finalize();
    /////new_data will now contain an entry for "Hello" an entry for "World" and an entry
    /////for "Damn I forgot" 
    ///
    ///```
    pub fn from<'a>(raw_memory: &'a [u8]) -> Result<MemBufferWriter,MemBufferError> {
        let reader = MemBufferReader::new(raw_memory)?;
        let mut offsets : Vec<InternPosition> = Vec::new();
        for x in reader.offsets.iter() {
            offsets.push(InternPosition{
                pos: Position {
                    offset: x.pos.offset,
                    length: x.pos.length,
                },
                variable_type: x.variable_type
            });
        }

        Ok(MemBufferWriter {
            offsets,
            data: reader.data.to_vec()
        })
    }

    ///Serializes the integer to the memory slice
    pub fn serialize_i32_to(val: i32, to: &mut Vec<u8>) {
        to.write_i32::<NativeEndian>(val).unwrap();
    }

    ///Adds an entry to the writer the only requirement is the serializable trait
    pub fn add_entry<T: MemBufferSerialize>(&mut self, val: T) {
        let mut position = Position {offset: self.data.len() as i32, length: 0};
        let slice = val.to_mem_buffer(&mut position);
        position.length = slice.len() as i32;
        self.offsets.push(InternPosition{pos:position,variable_type: T::get_mem_buffer_type()});
        self.data.extend_from_slice(&slice);
    }

    ///Adds a serde serializable entry into the structure as serializer serde_json is used.
    ///Internally it is saved as a string.
    pub fn add_serde_entry<T: Serialize>(&mut self,val: &T) {
        let as_str = serde_json::to_string(val).unwrap();
        self.add_entry(&as_str);
    }


    ///Finalize the schema and return the memory slice holding the whole vector
    pub fn finalize(&self) -> Vec<u8> {
        let mut var: Vec<u8> = Vec::with_capacity(self.data.len()+self.offsets.len()*20);
        MemBufferWriter::serialize_i32_to(self.offsets.len() as i32,&mut var);
        for val in self.offsets.iter() {
            MemBufferWriter::serialize_i32_to(val.pos.offset, &mut var);
            MemBufferWriter::serialize_i32_to(val.pos.length, &mut var);
            MemBufferWriter::serialize_i32_to(val.variable_type, &mut var);
        }
        MemBufferWriter::serialize_i32_to(0x7AFECAFE, &mut var);
        var.extend_from_slice(&self.data);
        var
    }
}



#[cfg(test)]
mod tests {
    use super::{MemBufferWriter,MemBufferReader,MemBufferError,MemBufferTypes,MemBufferSerialize};
    use serde::{Serialize,Deserialize};

    #[derive(Serialize,Deserialize)]
    struct HeavyStruct {
        vec: Vec<u64>,
        name: String,
        frequency: i32,
        id: i32,
    }

    #[test]
    fn check_enum_usage() {
        let mut writer = MemBufferWriter::new();
        writer.add_entry("Der moderne Prometheus");
        writer.add_entry("Dies hier ist nur ein Satz");
        writer.add_entry::<&[u64]>(&vec![0,1,2,3,4,5]);

        let result = writer.finalize();

        let reader = MemBufferReader::new(&result).unwrap();

        let _: &str = reader.load_entry(0).unwrap();
        let _: &str = reader.load_entry(1).unwrap();
        let _: &[u64] = reader.load_entry(2).unwrap();
    }
    
    #[test]
    fn check_type_ids() {
        assert_eq!(<&str as MemBufferSerialize>::get_mem_buffer_type(),MemBufferTypes::Text as i32);
        assert_eq!(<&String as MemBufferSerialize>::get_mem_buffer_type(),MemBufferTypes::Text as i32);
        assert_eq!(<i32 as MemBufferSerialize>::get_mem_buffer_type(),MemBufferTypes::Integer32 as i32);
        assert_eq!(<&[u8] as MemBufferSerialize>::get_mem_buffer_type(),MemBufferTypes::VectorU8 as i32);
        assert_eq!(<&[u64] as MemBufferSerialize>::get_mem_buffer_type(),MemBufferTypes::VectorU64 as i32);
        assert_eq!(MemBufferWriter::get_mem_buffer_type(),MemBufferTypes::MemBuffer as i32);
    }

    #[test]
    fn corrupt_length() {
        let mut writer = MemBufferWriter::new();
        writer.add_entry("Der moderne Prometheus");
        writer.add_entry("Dies hier ist nur ein Satz");
        writer.add_entry::<&[u64]>(&vec![0,1,2,3,4,5]);

        let mut result = writer.finalize();
        result[0] = 100;


        let reader = MemBufferReader::new(&result);
        assert_eq!(reader.is_err(),true);
    }

    #[test]
    fn check_read_attributes() {
        let mut writer = MemBufferWriter::new();
        let str1 = "Hello World";
        let str2 = "Hello second World";
        let str3 = "визитной карточкой";
        writer.add_entry(str1);
        writer.add_entry(str2);
        writer.add_entry(str3);
        let result = writer.finalize();

        let reader = MemBufferReader::new(&result).unwrap();
        let positions = &reader.offsets;

        assert_eq!(positions.len(),3);
        let zero = &positions[0];
        assert_eq!(zero.variable_type,MemBufferTypes::Text as i32);
        assert_eq!(zero.pos.offset,0);
        assert_eq!(zero.pos.length,str1.as_bytes().len() as i32);

        let one = &positions[1];
        assert_eq!(one.variable_type,MemBufferTypes::Text as i32);
        assert_eq!(one.pos.offset,str1.as_bytes().len() as i32);
        assert_eq!(one.pos.length,str2.as_bytes().len() as i32);

        let two = &positions[2];
        assert_eq!(two.variable_type,MemBufferTypes::Text as i32);
        assert_eq!(two.pos.offset as usize,str1.as_bytes().len() + str2.as_bytes().len());
        assert_eq!(two.pos.length,str3.as_bytes().len() as i32);

        assert_eq!(reader.load_entry::<&str>(2).unwrap(),str3);
    }

    #[test]
    fn check_serde_capability() {
        let value = HeavyStruct {
            vec: vec![100,20,1],
            name: String::from("membuffer!"),
            frequency: 10,
            id: 200,
        };
        let mut writer = MemBufferWriter::new();
        writer.add_serde_entry(&value);
        let result = writer.finalize();
 
        let reader = MemBufferReader::new(&result).unwrap();
        let struc: HeavyStruct = reader.load_serde_entry(0).unwrap();

        assert_eq!(struc.vec, vec![100,20,1]);
        assert_eq!(struc.name,"membuffer!");
        assert_eq!(struc.frequency,10);
        assert_eq!(struc.id,200);
    }

    #[test]
    fn check_serialize_string_deserialize() {
        let mut writer = MemBufferWriter::new();
        writer.add_entry("Earth");
        let result = writer.finalize();

        let reader = MemBufferReader::new(&result).unwrap();
        assert_eq!(reader.load_entry::<&str>(0).unwrap(), "Earth");
    }

    #[test]
    fn check_serialize_vecu8_deserialize() {
        let mut writer = MemBufferWriter::new();
        let some_bytes : Vec<u8> = vec![100,200,100,200,1,2,3,4,5,6,7,8,9,10];
        writer.add_entry(&some_bytes[..]);
        let result = writer.finalize();

        let reader = MemBufferReader::new(&result).unwrap();
        assert_eq!(reader.load_entry::<&[u8]>(0).unwrap(), vec![100,200,100,200,1,2,3,4,5,6,7,8,9,10]);
    }

    #[should_panic]
    #[test]
    fn check_wrong_key() {
        let mut writer = MemBufferWriter::new();
        let some_bytes : Vec<u64> = vec![100,200,100,200,1,2,3,4,5,6,7,8,9,10];
        writer.add_entry(&some_bytes[..]);
        writer.add_entry(&some_bytes[..]);
        let result = writer.finalize();

        let reader = MemBufferReader::new(&result).unwrap();
        assert_eq!(reader.load_entry::<&[u64]>(0).unwrap(), vec![100,200,100,200,1,2,3,4,5,6,7,8,9,10]);
        //TODO check index overflow
        assert_eq!(reader.load_entry::<&[u64]>(3).unwrap(), vec![100,200,100,200,1,2,3,4,5,6,7,8,9,10]);
    }

    #[test]
    fn check_reload_writer_from_mem() {
        let mut writer = MemBufferWriter::new();
        let str1 = "Hello World";
        let str2 = "Hello second World";
        let str3 = "визитной карточкой";
        writer.add_entry(str1);
        writer.add_entry(str2);
        writer.add_entry(str3);
        let result = writer.finalize();

        let mut writer2 = MemBufferWriter::from(&result).unwrap();
        writer2.add_entry("fuchs");
        
        let added2 = writer2.finalize();
        let reader = MemBufferReader::new(&added2).unwrap();
        assert_eq!(reader.len(),4);
        assert_eq!(reader.load_entry::<&str>(3).unwrap(),"fuchs");
        assert_eq!(reader.load_entry::<&str>(2).unwrap(),"визитной карточкой");
    }

    #[test]
    fn check_serialize_vecu64_deserialize() {
        let mut writer = MemBufferWriter::new();
        let some_bytes : Vec<u64> = vec![100,200,100,200,1,2,3,4,5,6,7,8,9,10];
        writer.add_entry(&some_bytes[..]);
        writer.add_entry(&some_bytes[..]);
        let result = writer.finalize();

        let reader = MemBufferReader::new(&result).unwrap();
        assert_eq!(reader.load_entry::<&[u64]>(0).unwrap(), vec![100,200,100,200,1,2,3,4,5,6,7,8,9,10]);
        assert_eq!(reader.load_entry::<&[u64]>(1).unwrap(), vec![100,200,100,200,1,2,3,4,5,6,7,8,9,10]);
    }


    #[test]
    fn check_len() {
        let mut writer = MemBufferWriter::new();
        let some_bytes : Vec<u64> = vec![100,200,100,200,1,2,3,4,5,6,7,8,9,10];
        writer.add_entry(&some_bytes[..]);
        writer.add_entry(&some_bytes[..]);
        writer.add_entry(&some_bytes[..]);
        let result = writer.finalize();

        let reader = MemBufferReader::new(&result).unwrap();
        assert_eq!(reader.len(), 3);
    }

    #[test]
    fn check_empty() {
        let writer = MemBufferWriter::new();
        let result = writer.finalize();
        let reader = MemBufferReader::new(&result).unwrap();
        assert_eq!(reader.len(), 0);
        assert_eq!("Found memory buffer with payload size 0",format!("{:?}",reader));

    }

    #[test]
    fn check_slice_too_small() {
        let writer = MemBufferWriter::new();
        let result = writer.finalize();
        let reader = MemBufferReader::new(&result[0..1]);
        assert_eq!(reader.is_err(),true);
        println!("Error: {}",reader.unwrap_err());
    }


    #[test]
    fn check_payload_len() {
        let mut writer = MemBufferWriter::new();
        let some_bytes = "Hello how are you?";
        writer.add_entry(&some_bytes[..]);
        writer.add_entry(&some_bytes[..]);
        writer.add_entry(&some_bytes[..]);
        let result = writer.finalize();

        let reader = MemBufferReader::new(&result).unwrap();
        assert_eq!(reader.payload_len(), some_bytes.as_bytes().len()*3);
    }

    #[test]
    fn check_recursive_readers() {
        let mut writer = MemBufferWriter::new();
        let some_bytes = "Hello how are you?";
        writer.add_entry(&some_bytes[..]);

        let mut writer2 = MemBufferWriter::new();
        writer2.add_entry(some_bytes);

        writer.add_entry(writer2);
        let result = writer.finalize();
        assert_eq!(writer.finalize(), result);

        let reader = MemBufferReader::new(&result).unwrap();
        assert_eq!(reader.len(), 2);
        assert_eq!(reader.load_entry::<&str>(0).unwrap(), "Hello how are you?");
        let second = reader.load_recursive_reader(1);
        assert_eq!(second.is_err(),false);
        let reader2 = second.unwrap();
        assert_eq!(reader2.len(), 1);
        assert_eq!(reader2.load_entry::<&str>(0).unwrap(), "Hello how are you?");

        assert_eq!(reader.load_recursive_reader(0).is_err(),true);
    }

    #[test]
    fn check_mem_shift() {
        let mut writer = MemBufferWriter::new();
        writer.add_entry("Earth");
        let result = writer.finalize();

        let reader = MemBufferReader::new(&result[1..]);
        assert_eq!(reader.is_err(),true);
    }

    #[test]
    fn check_type_error() {
        let mut writer = MemBufferWriter::new();
        writer.add_entry("Earth");
        let result = writer.finalize();

        let reader = MemBufferReader::new(&result);
        assert_eq!(reader.is_err(),false);
        let err = reader.unwrap().load_entry::<i32>(0).unwrap_err();
        if let MemBufferError::FieldTypeError(x,y) = err {
                println!("Error {} ",MemBufferError::FieldTypeError(x,y));
                assert_eq!(x, MemBufferTypes::Text as i32);
                assert_eq!(y, MemBufferTypes::Integer32 as i32);
        }
    }


    #[test]
    fn check_serialize_i32_deserialize() {
        let mut writer = MemBufferWriter::new();
        writer.add_entry(100);
        let result = writer.finalize();

        let reader = MemBufferReader::new(&result).unwrap();
        assert_eq!(reader.load_entry::<i32>(0).unwrap(), 100);
    }
}

#[cfg(feature="bench")]
mod bench {
    use test::Bencher;
    use super::{MemBufferWriter,MemBufferReader};
    use serde::{Serialize,Deserialize};
    use serde_json;


    #[bench]
    fn benchmark_few_keys_payload_1mb(b: &mut Bencher) {
        let mut huge_string = String::with_capacity(1_000_000);
        for _ in 0..1_000_000 {
            huge_string.push('a');
        }
        let mut writer = MemBufferWriter::new();
        writer.add_entry(&huge_string);
        let result = writer.finalize();

        b.iter(|| {
            let reader = MemBufferReader::new(&result).unwrap();
            let string = reader.load_entry::<&str>(0).unwrap();
            assert_eq!(string.len(), 1_000_000);
        });
    }

    #[bench]
    fn benchmark_few_keys_payload_10mb(b: &mut Bencher) {
        let mut huge_string = String::with_capacity(10_000_000);
        for _ in 0..10_000_000 {
            huge_string.push('a');
        }
        let mut writer = MemBufferWriter::new();
        writer.add_entry(&huge_string);
        let result = writer.finalize();

        b.iter(|| {
            let reader = MemBufferReader::new(&result).unwrap();
            let string = reader.load_entry::<&str>(0).unwrap();
            assert_eq!(string.len(), 10_000_000);
        });
    }

    #[bench]
    fn benchmark_few_keys_payload_100mb(b: &mut Bencher) {
        let mut huge_string = String::with_capacity(10_000_000);
        for _ in 0..100_000_000 {
            huge_string.push('a');
        }
        let mut writer = MemBufferWriter::new();
        writer.add_entry(&huge_string);
        let result = writer.finalize();

        b.iter(|| {
            let reader = MemBufferReader::new(&result).unwrap();
            let string = reader.load_entry::<&str>(0).unwrap();
            assert_eq!(string.len(), 100_000_000);
        });
    }

    #[bench]
    fn benchmark_few_keys_payload_1mb_times_3(b: &mut Bencher) {
        let mut huge_string = String::with_capacity(1_000_000);
        for _ in 0..1_000_000 {
            huge_string.push('a');
        }
        let mut writer = MemBufferWriter::new();
        writer.add_entry(&huge_string);
        writer.add_entry(&huge_string);
        writer.add_entry(&huge_string);
        let result = writer.finalize();
        assert!(result.len() > 3_000_000);

        b.iter(|| {
            let reader = MemBufferReader::new(&result).unwrap();
            let string1 = reader.load_entry::<&str>(0).unwrap();
            let string2 = reader.load_entry::<&str>(1).unwrap();
            let string3 = reader.load_entry::<&str>(2).unwrap();
            assert_eq!(string1.len(), 1_000_000);
            assert_eq!(string2.len(), 1_000_000);
            assert_eq!(string3.len(), 1_000_000);
        });
    }

    #[bench]
    fn benchmark_few_keys_payload_100mb_times_3(b: &mut Bencher) {
        let mut huge_string = String::with_capacity(100_000_000);
        for _ in 0..100_000_000 {
            huge_string.push('a');
        }
        let mut writer = MemBufferWriter::new();
        writer.add_entry(&huge_string);
        writer.add_entry(&huge_string);
        writer.add_entry(&huge_string);
        let result = writer.finalize();
        assert!(result.len() > 300_000_000);

        b.iter(|| {
            let reader = MemBufferReader::new(&result).unwrap();
            let string1 = reader.load_entry::<&str>(0).unwrap();
            let string2 = reader.load_entry::<&str>(1).unwrap();
            let string3 = reader.load_entry::<&str>(2).unwrap();
            assert_eq!(string1.len(), 100_000_000);
            assert_eq!(string2.len(), 100_000_000);
            assert_eq!(string3.len(), 100_000_000);
        });   
    }

    #[derive(Serialize,Deserialize)]
    struct BenchSerde<'a> {
        one: &'a str,
        two: &'a str,
        three: &'a str
    }

    #[bench]
    fn benchmark_few_keys_payload_1mb_times_3_serde(b: &mut Bencher) {
        let mut huge_string = String::with_capacity(1_000_000);
        for _ in 0..1_000_000 {
            huge_string.push('a');
        }
        let first = BenchSerde {
            one: &huge_string,
            two: &huge_string,
            three: &huge_string
        };

        let string = serde_json::to_string(&first).unwrap();

        b.iter(|| {
            let reader: BenchSerde = serde_json::from_str(&string).unwrap();
            assert_eq!(reader.one.len(), 1_000_000);
            assert_eq!(reader.two.len(), 1_000_000);
            assert_eq!(reader.three.len(), 1_000_000);
        });
    }
}