1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
//! This crate contains reasonably efficient solutions for all Advent of Code 2021 puzzles.  See
//! [AOC 2021](https://adventofcode.com/2021) for more information, including puzzle prompts.
//!
//! If you haven't used [Rust](https://www.rust-lang.org) before, these are generated docs from the
//! codebase.  They should cover my thoughts on the problem and solutions, provide an overview, and
//! allow easily browsing through the code via the `[src]` buttons on the right side of the screen.
//! This is the first time I've thought of displaying more than code via Rust docs like this, so
//! I'm curious for feedback.
//!
//! # Initial Goal
//!
//! Execute all puzzles before the JVM can start up (~800ms).
//!
//! Note: This was solidly achieved, as all puzzles run in <100ms on each benchmarked system.
//! On my desktop, they run faster than `python` can cold-start (measured via `time python3 -c
//! "exit()"`)!
//!
//! # Code layout
//!
//! Each day's code is in a different module (linked at the bottom of this page), with three
//! mandatory functions: `generator`, `part1`, and `part2`.  `generator` is passed the input text,
//! parses and computes a useful intermediate representation from it, and a reference to that value
//! is passed to `part1` and `part2`.
//!
//! This allows us to focus on each part individually, as well as track the cost of parsing the
//! input.  However, it means we often end up doing duplicated work between `part1` and `part2`.
//!
//! Solutions are intended to be general, but may require constants to be changed.  For example, if
//! the input is a fixed-size grid, data structures will likely use a constant set to that fixed
//! size, since this enables storing data with less required pointer traversing.
//!
//! Due to the anemic (by modern standards) cache on my desktop machine, I frequently optimize for
//! memory efficiency rather than amount of work done by the CPU.  This may not pay off as well on
//! a system with a faster memory hierarchy.
//!
//! # Benchmarking
//!
//! Solutions have been benchmarked on a few different systems, but the main development was done
//! on an [Intel i7-6700K](`benchmarks::I6700K`).  System information and results can be found
//! under the [`benchmarks`] module.
//!
//! For the full code, including framework and benchmarking code, see [the Gitlab
//! repo](https://gitlab.com/mbryant/aoc-2021).

/// The intro day - not much interesting here.
pub mod day1 {
    /// [`u32`] experimentally appears to be a good balance between cache-efficiency and fast
    /// operations.
    pub type Int = u32;

    /// Parse each line to an integer.
    pub fn generator(input: &str) -> Vec<Int> {
        input
            .lines()
            .map(|x| x.parse().expect("Not an integer"))
            .collect()
    }

    /// Use [`Iterator::fold`] to track the number of increases along with the previous element.
    pub fn part1(input: &[Int]) -> Int {
        let (increases, _) = input
            .iter()
            .fold((0, Int::MIN), |(increases, prev), &curr| {
                (
                    if prev < curr {
                        increases + 1
                    } else {
                        increases
                    },
                    curr,
                )
            });
        increases - 1
    }

    /// Rather than comparing 3-tuples, we can recognize that two of the elements overlap and only
    /// compare the first and last.
    pub fn part2(input: &[Int]) -> usize {
        let increases = input
            .iter()
            .enumerate()
            .skip(3)
            .filter(|(i, &v)| v > input[i - 3])
            .count();
        increases - 1
    }
}

/// More interesting parsing than [day1], but not too different or difficult.
pub mod day2 {
    /// u32 experimentally appears to be a good balance between cache-efficiency and fast
    /// operations.
    pub type Int = u32;

    /// A naive representation for operations - this might be faster to use if we could tell Rust
    /// that our integers will never be a full 32 bits long, but doesn't matter too much.
    pub enum Direction {
        Forward(Int),
        Up(Int),
        Down(Int),
    }

    /// Parsing text is the bottleneck for this day.
    ///
    /// We know the distance will be in [0..9], and the first characters of each command are
    /// unique, so we only need to look closely at two characters of the string.
    /// Additionally, we parse via ASCII rather than using [str::parse].
    pub fn generator(input: &str) -> Vec<Direction> {
        input
            .lines()
            .map(|line| {
                let dist = (line.as_bytes()[line.len() - 1] - b'0') as Int;

                match line.bytes().next() {
                    Some(b'u') => Direction::Up(dist),
                    Some(b'f') => Direction::Forward(dist),
                    Some(b'd') => Direction::Down(dist),
                    _ => unreachable!(),
                }
            })
            .collect()
    }

    /// Trivial [Iterator::fold] solution with no real optimization opportunities
    pub fn part1(input: &[Direction]) -> u32 {
        let (x, y) = input.iter().fold((0, 0), |(x, y), dir| match dir {
            Direction::Forward(dist) => (x + dist, y),
            Direction::Up(dist) => (x, y - dist),
            Direction::Down(dist) => (x, y + dist),
        });

        x * y
    }

    /// Trivial [Iterator::fold] solution with no real optimization opportunities
    pub fn part2(input: &[Direction]) -> u32 {
        let (x, y, _) = input.iter().fold((0, 0, 0), |(x, y, aim), dir| match dir {
            Direction::Forward(dist) => (x + dist, y + aim * dist, aim),
            Direction::Up(dist) => (x, y, aim - dist),
            Direction::Down(dist) => (x, y, aim + dist),
        });

        x * y
    }
}

/// Inputs can obviously be stored as integers, rather than lists.
/// The biggest challenge today was to keep the ordering consistent between [day3::generator] and
/// [day3::part1]/[day3::part2].
pub mod day3 {
    /// All inputs are of length 12
    pub const BITS: usize = 12;

    /// An integer type large enough to hold [BITS] bits.
    pub type Int = u32;

    const _: () = assert!(std::mem::size_of::<Int>() * 8 >= BITS);

    /// Build integers from binary representation in the standard fashion.
    pub fn generator(input: &str) -> Vec<Int> {
        input
            .lines()
            .map(|line| {
                line.bytes()
                    .enumerate()
                    .rfold(0, |acc, (i, b)| {
                        if b == b'1' {
                            acc | 1 << (BITS - i - 1)
                        } else {
                            acc
                        }
                    })
                    .try_into()
                    .expect("All integers are BITS long")
            })
            .collect()
    }

    /// For each of the bits, do some fairly naive folding.
    pub fn part1(input: &[Int]) -> usize {
        let gamma: usize = (0..BITS).fold(0, |gamma, i| {
            let ones = input.iter().filter(|&num| (num & (1 << i)) != 0).count();

            if ones > input.len() / 2 {
                gamma | (1 << i)
            } else {
                gamma
            }
        });

        gamma * (((1 << BITS) - 1) & !gamma)
    }

    /// Two sets of very similar looking code, but with nothing terribly interesting.
    pub fn part2(input: &[Int]) -> usize {
        let (mut oxygen, mut co2) = (0, 0);

        let mut current = input.to_vec();
        for i in (0..BITS).rev() {
            let ones = current.iter().filter(|&num| (num & (1 << i)) != 0).count();
            let oxygen_target = (2 * ones >= current.len()) as Int;

            current.retain(|&num| (num >> i) & 1 == oxygen_target);

            if current.len() == 1 {
                oxygen = current[0] as usize;
            }
        }

        let mut current = input.to_vec();
        for i in (0..BITS).rev() {
            let ones = current.iter().filter(|&num| (num & (1 << i)) != 0).count();
            let co2_target = (2 * ones < current.len()) as Int;

            current.retain(|&num| (num >> i) & 1 == co2_target);

            if current.len() == 1 {
                co2 = current[0] as usize;
            }
        }

        oxygen * co2
    }
}

/// It's bingo time.  The real problems start!
pub mod day4 {
    use arrayvec::ArrayVec;
    use fnv::FnvHashMap;
    use itertools::Itertools;

    /// Experimentally chosen via benchmarking.
    pub type Int = u32;

    /// All boards are 5x5.
    pub const BOARD_SIZE: usize = 5;

    /// A marker representing a previously hit square.
    pub const SENTINEL: Int = Int::MAX;

    /// We use fixed-size arrays for boards, to avoid unnecessary memory accesses.
    pub type Board = [[Int; BOARD_SIZE]; BOARD_SIZE];

    /// A game consists of some input and a set of boards.
    /// We don't need to be fancy with the representation, since
    /// this is mainly a carrier struct for the interesting data.
    #[derive(Debug, Clone)]
    pub struct Game {
        pub input: Vec<Int>,
        pub boards: Vec<Board>,
    }

    /// A fairly annoying day for parsing,  since it took me a while to figure out why
    /// [Itertools::chunks] can't be directly chained with [Iterator::map] and [Iterator::collect].
    ///
    /// Remove the first line, split the remaining into chunks of `BOARD_SIZE + 1` lines each, then
    /// split on any whitespace before converting to [Board]s.
    /// We use some temporary [ArrayVec]s to save on allocations, since otherwise we'd have to rely
    /// on the compiler to eliminate unnecessary [Vec] allocations while creating our fixed size
    /// arrays (which it doesn't).
    pub fn generator(input: &str) -> Game {
        let mut lines = input.lines();

        let drawn = lines
            .next()
            .expect("Must be multiple lines")
            .split(',')
            .map(|x| x.parse().expect("Must draw ints"))
            .collect();

        let boards = lines
            .chunks(BOARD_SIZE + 1)
            .into_iter()
            .map(|lines| {
                lines
                    .skip(1)
                    .take(BOARD_SIZE)
                    .map(|line| {
                        line.split_whitespace()
                            .map(|x| x.parse().expect("Board contains ints"))
                            .collect::<ArrayVec<_, BOARD_SIZE>>()
                            .as_slice()
                            .try_into()
                            .expect("Must be BOARD_SIZE elements")
                    })
                    .collect::<ArrayVec<_, BOARD_SIZE>>()
                    .as_slice()
                    .try_into()
                    .expect("Must be BOARD_SIZE rows")
            })
            .collect();

        Game {
            input: drawn,
            boards,
        }
    }

    /// For each number drawn, walk through all boards and cross it off.
    /// After crossing it off on a board, do a naive check for whether this move completes a bingo.
    ///
    /// This has approaches that theoretically do less work, but the constant factors (likely
    /// memory overhead of branch mispredictions) mean they lose to the naive approach.
    pub fn part1(input: &Game) -> usize {
        let mut game = input.clone();

        let (draw, board) = game
            .input
            .iter()
            .find_map(|&draw| {
                // Apply the draw to all boards
                game.boards
                    .iter_mut()
                    .enumerate()
                    .find_map(|(b, board)| {
                        (0..BOARD_SIZE).find_map(|row| {
                            (0..BOARD_SIZE).find_map(|col| {
                                if board[row][col] == draw {
                                    // Found a hit, check if we have a bingo
                                    board[row][col] = SENTINEL;

                                    if (0..BOARD_SIZE).all(|y| board[row][y] == SENTINEL)
                                        || (0..BOARD_SIZE).all(|x| board[x][col] == SENTINEL)
                                    {
                                        return Some(b);
                                    }
                                }

                                None
                            })
                        })
                    })
                    .map(|winning_board| (draw, winning_board))
            })
            .expect("Must be a winning board");

        let board_sum = game.boards[board]
            .iter()
            .map(|row| {
                row.iter()
                    .copied()
                    .filter_map(|x| (x != SENTINEL).then(|| x as usize))
                    .sum::<usize>()
            })
            .sum::<usize>();

        (draw as usize) * board_sum
    }

    /// Implemented very similarly to [part1], except we track which boards haven't yet scored a
    /// bingo and remove them from the game when they do.
    pub fn part2(input: &Game) -> usize {
        let mut game = input.clone();

        let mut remaining = game
            .boards
            .iter_mut()
            .enumerate()
            .collect::<FnvHashMap<_, _>>();

        let (draw, board) = game
            .input
            .iter()
            .find_map(|&draw| {
                // Assume two boards aren't removed at once, since the hashmap won't work well with
                // that.
                let mut removed = usize::MAX;

                remaining.retain(|&b, board| {
                    // Keep any boards that aren't a bingo.
                    !(0..BOARD_SIZE).any(|row| {
                        (0..BOARD_SIZE).any(|col| {
                            if board[row][col] == draw {
                                // Found a hit, check if we have a bingo
                                board[row][col] = SENTINEL;

                                // Are we a bingo?
                                let bingo = (0..BOARD_SIZE).all(|y| board[row][y] == SENTINEL)
                                    || (0..BOARD_SIZE).all(|x| board[x][col] == SENTINEL);

                                if bingo {
                                    removed = b;
                                }

                                bingo
                            } else {
                                false
                            }
                        })
                    })
                });

                (remaining.is_empty()).then(|| (draw, removed))
            })
            .expect("Must be a winning board");

        let board_sum = game.boards[board]
            .iter()
            .map(|row| {
                row.iter()
                    .copied()
                    .filter_map(|x| (x != SENTINEL).then(|| x as usize))
                    .sum::<usize>()
            })
            .sum::<usize>();

        (draw as usize) * board_sum
    }
}

/// Calculate the number of segment intersections by drawing each segment on a grid and seeing how
/// many overlaps occurred.
/// This feels gross compared to using math, but the implementation worked out to be both cleaner and run faster.
///
/// This is by far the slowest of the early days, since the approach requires writing mostly
/// unpredictably to an array of [day5::BOARD_SIZE]² bytes, and the vast majority of time is spent
/// on cache misses.
pub mod day5 {
    use std::cmp::Ordering;

    /// Negative numbers aren't very ergonomic in Rust when working with unsigned integers, so we
    /// use signed integers even though all values are unsigned.
    pub type Int = i32;

    /// The largest value in our kune segments is under 1000.
    pub const BOARD_SIZE: usize = 1000;

    /// The most naive representation for line segments.
    #[derive(Debug, Copy, Clone)]
    pub struct Line {
        /// (x,y)
        start: (Int, Int),
        /// (x,y)
        end: (Int, Int),
    }

    /// A key insight is that we want all segments to be sorted in the `x` direction, since we can
    /// greatly reduce the number of comparisons by using sorting, and `x` is more cache-efficient
    /// than `y` direction.
    ///
    /// This function is full of repetitive error-"handling" code - this would be easier with a
    /// legitimate parsing library, but it's likely not worth the cost and additional dependency
    /// that would require.
    pub fn generator(input: &str) -> Vec<Line> {
        input
            .lines()
            .map(|line| {
                let mut spaces = line.split_whitespace();

                let start = spaces
                    .next()
                    .expect("Must be a start")
                    .split_once(',')
                    .expect("Must be a comma");
                let end = spaces
                    .last()
                    .expect("Must be a end")
                    .split_once(',')
                    .expect("Must be a comma");

                let segment = Line {
                    start: (
                        start.0.parse().expect("Must be integer x"),
                        start.1.parse().expect("Must be integer y"),
                    ),
                    end: (
                        end.0.parse().expect("Must be integer x"),
                        end.1.parse().expect("Must be integer y"),
                    ),
                };

                // Ensure our segments are always sorted by X for cache efficiency.
                if segment.start.0 <= segment.end.0 {
                    segment
                } else {
                    Line {
                        start: segment.end,
                        end: segment.start,
                    }
                }
            })
            .collect()
    }

    /// This was initially implemented with actual math to calculate the overlaps, but simply
    /// drawing all segments on the board was simpler, faster, and made it easier to share code
    /// with [part2].
    /// It's possible that the math-based approach would beat this in performance with more
    /// optimization work.
    pub fn part1(input: &[Line]) -> usize {
        let mut hit_count = [[0u8; BOARD_SIZE]; BOARD_SIZE];

        for line in input {
            // We're already sorted in the x direction, so only care about y.
            let increment_y = match line.start.1.cmp(&line.end.1) {
                Ordering::Equal => {
                    // Fully horizontal, so special-case this for a ~15% perf boost.
                    (line.start.0..=line.end.0).for_each(|x| {
                        hit_count[line.start.1 as usize][x as usize] += 1;
                    });
                    continue;
                }
                Ordering::Less => 1,
                Ordering::Greater => -1,
            };
            if line.start.0 != line.end.0 {
                // Only vertical and horizontal allowed
                continue;
            }

            let mut y = line.start.1;
            hit_count[y as usize][line.start.0 as usize] += 1;

            while y != line.end.1 {
                y += increment_y;
                hit_count[y as usize][line.start.0 as usize] += 1;
            }
        }

        hit_count
            .into_iter()
            .map(|row| row.into_iter().filter(|&x| x > 1).count())
            .sum()
    }

    /// Almost identical to [part1].
    pub fn part2(input: &[Line]) -> usize {
        let mut hit_count = [[0u8; BOARD_SIZE]; BOARD_SIZE];

        for line in input {
            // We're already sorted in the x direction, so only care about y.
            let increment_y = match line.start.1.cmp(&line.end.1) {
                Ordering::Equal => {
                    // Fully horizontal, so special-case this for a ~15% perf boost.
                    (line.start.0..=line.end.0).for_each(|x| {
                        hit_count[line.start.1 as usize][x as usize] += 1;
                    });
                    continue;
                }
                Ordering::Less => 1,
                Ordering::Greater => -1,
            };
            let increment_x = if line.start.0 == line.end.0 { 0 } else { 1 };

            let (mut x, mut y) = line.start;
            hit_count[y as usize][x as usize] += 1;

            while (x, y) != line.end {
                y += increment_y;
                x += increment_x;
                hit_count[y as usize][x as usize] += 1;
            }
        }

        hit_count
            .into_iter()
            .map(|row| row.into_iter().filter(|&x| x > 1).count())
            .sum()
    }
}

/// A part2-gotcha day if you don't realize the counts are all that matter.
pub mod day6 {
    /// Fish are born with a counter of 8
    pub const BIRTH_AGE: usize = 8;
    /// Fish can spawn again with a counter of 6
    pub const SPAWN_AGE: usize = 6;

    /// Experimentally faster than u32
    pub type FishCount = usize;

    /// We only track the number of fish with a given age
    pub type Fish = [FishCount; BIRTH_AGE + 1];

    /// Each input is in [0..9), so we can look at bytes rather than parsing integers.
    pub fn generator(input: &str) -> Fish {
        let mut table: Fish = Default::default();

        input
            .trim_end()
            .split(',')
            .map(|x| (x.as_bytes()[0] - b'0') as usize)
            .for_each(|age| table[age] += 1);

        table
    }

    /// For each day, shuffle the counts of all fish down by one, spawning new ones as necessary.
    pub fn fish_count<const DAYS: usize>(mut ages: Fish) -> FishCount {
        for _ in 0..DAYS {
            // Take the zeroes
            let zeroes = std::mem::take(&mut ages[0]);

            // Bump everything else down a day
            for age in 1..ages.len() {
                ages[age - 1] = ages[age];
            }

            ages[SPAWN_AGE] += zeroes;
            ages[BIRTH_AGE] = zeroes
        }

        ages.iter().sum()
    }

    /// [fish_count] for 80 iterations.
    pub fn part1(input: &Fish) -> FishCount {
        fish_count::<80>(*input)
    }

    /// [fish_count] for 256 iterations.
    pub fn part2(input: &Fish) -> FishCount {
        fish_count::<256>(*input)
    }
}

/// Use some math that's unjustified but feels approximately correct to find fast answers.
pub mod day7 {
    use itertools::Itertools;

    /// Naive parsing strategy
    pub fn generator(input: &str) -> Vec<isize> {
        input
            .trim_end()
            .split(',')
            .map(|x| x.parse().expect("Crabs are integral"))
            .sorted()
            .collect()
    }

    /// The optimal position for changes of one is the median.
    pub fn part1(input: &[isize]) -> isize {
        let target = input[input.len() / 2];

        input.iter().map(|x| (x - target).abs()).sum()
    }

    /// The optimal position for changes with a squared distance function like this appears to be
    /// near the mean.
    pub fn part2(input: &[isize]) -> usize {
        let furthest = *input.last().expect("Must be multiple crabs");

        let memoized_distances: Vec<usize> = (0..=furthest)
            .scan(0usize, |state, distance| {
                *state += distance as usize;

                Some(*state)
            })
            .collect();

        // Mean appears to be right about the correct location for some reason.
        // Rather than figure out why, let's just check a few nearby assuming the answer is `mean
        // +- rounding`.
        let mean = input.iter().sum::<isize>() / input.len() as isize;

        (mean - 1..=mean + 1)
            .map(|target| {
                input
                    .iter()
                    .map(|crab| memoized_distances[(crab - target).abs() as usize])
                    .sum()
            })
            .min()
            .expect("Must be a crab")
    }
}

/// A fun logic problem, with parsing being the most complicated piece.
pub mod day8 {
    use arrayvec::ArrayVec;
    use itertools::Itertools;

    /// We store inputs as a bit vector with [`NUM_LEGS`] different bits.
    pub type Number = u8;

    /// There are 10 signals per input
    pub const NUM_SIGNALS: usize = 10;
    /// There are four outputs per input
    pub const NUM_OUTPUTS: usize = 4;
    /// We're using a seven segment display
    pub const NUM_LEGS: usize = 7;

    /// Store inputs in a binary representation.
    pub struct Input {
        /// Patterns are sorted by length.
        patterns: [Number; NUM_SIGNALS],
        outputs: [Number; NUM_OUTPUTS],
    }

    /// Parse each input into a bit vector, skip the `|` separator, and repeat for the outputs.
    pub fn generator(input: &str) -> Vec<Input> {
        input
            .lines()
            .map(|line| {
                let to_binary =
                    |num: &str| num.bytes().map(|b| 1 << (b - b'a')).fold(0u8, |a, b| a | b);

                let mut line = line.split(' ');

                Input {
                    patterns: line
                        .by_ref()
                        .take(10)
                        .map(to_binary)
                        .sorted_by_key(|x| x.count_ones())
                        .collect::<ArrayVec<_, NUM_SIGNALS>>()
                        .as_slice()
                        .try_into()
                        .expect("Must be NUM_SIGNALS elements"),
                    outputs: line
                        .skip(1)
                        .map(to_binary)
                        .collect::<ArrayVec<_, NUM_OUTPUTS>>()
                        .as_slice()
                        .try_into()
                        .expect("Must be NUM_OUTPUTS elements"),
                }
            })
            .collect()
    }

    /// The target output values have a unique number of legs, so we can simply count the bits in
    /// each output to determine if it's a target value.
    pub fn part1(signals: &[Input]) -> usize {
        signals
            .iter()
            .map(|input| {
                input
                    .outputs
                    .iter()
                    .filter(|output| matches!(output.count_ones(), 2 | 3 | 4 | 7))
                    .count()
            })
            .sum()
    }

    /// Logic through determining which letter corresponds to which leg over the input, then use
    /// this to convert the outputs.
    ///
    /// For example, one, seven, four, and eight have unique numbers of legs.  We can easily
    /// determine what bit represents the top leg of seven by doing `seven - one` an seeing the
    /// leftover bit.  Repeating this process quickly determines the remaining legs.
    pub fn part2(signals: &[Input]) -> usize {
        signals
            .iter()
            .map(|input| {
                //  00
                // 1  2
                // 1  2
                //  33
                // 4  5
                // 4  5
                //  66
                let mut k = [0u8; NUM_LEGS];

                // The easy ones
                let one = input.patterns[0];
                let seven = input.patterns[1];
                let four = input.patterns[2];
                let eight = input.patterns[9];

                let matches_bits = |x: Number, bits: Number| x & bits == bits;

                let three = input.patterns[3..6]
                    .iter()
                    .copied()
                    .find(|&x| matches_bits(x, one))
                    .expect("Must be a three");

                // As many things as we can do with our current info.
                k[0] = seven - one;
                k[1] = (eight - three) & four;
                k[3] = (three & four) - one;
                k[4] = (eight - three) & !k[1];
                k[6] = eight - four - k[0] - k[4];

                // Two and five are the remaining ones with 5 legs, but we only need one of them.
                let two = input.patterns[3..6]
                    .iter()
                    .copied()
                    .find(|&x| x & k[4] != 0)
                    .expect("Must be a two");

                k[2] = one & two;
                k[5] = one & !two;

                input
                    .outputs
                    .iter()
                    .map(|&x| match x {
                        x if x == one => 1,
                        x if x == seven => 7,
                        x if x == four => 4,
                        x if x == two => 2,
                        x if x == three => 3,
                        x if x == (k[0] | k[1] | k[3] | k[5] | k[6]) => 5,
                        x if x == (eight - k[2]) => 6,
                        x if x == (eight - k[3]) => 0,
                        x if x == (eight - k[4]) => 9,
                        x if x == eight => 8,
                        _ => unreachable!(),
                    })
                    .fold(0, |acc, digit| 10 * acc + digit)
            })
            .sum()
    }
}

/// An obvious BFS day that is more efficiently solved with a linear pass and a modified
/// union-find.
pub mod day9 {
    use arrayvec::ArrayVec;
    use fnv::FnvHashMap;
    use itertools::Itertools;

    /// The input map is 100 elements wide
    pub const WIDTH: usize = 100;
    /// The input map is 100 elements tall
    pub const HEIGHT: usize = 100;
    /// The map is a grid of [`WIDTH`] x [`HEIGHT`] containing numbers in `[0,9]`.
    pub type Map = [[u8; WIDTH]; HEIGHT];

    /// Naive parsing
    pub fn generator(input: &str) -> Map {
        input
            .lines()
            .map(|line| {
                line.bytes()
                    .map(|b| b - b'0')
                    .collect::<ArrayVec<_, WIDTH>>()
                    .as_slice()
                    .try_into()
                    .expect("Map must be WIDTH wide")
            })
            .collect::<ArrayVec<_, HEIGHT>>()
            .as_slice()
            .try_into()
            .expect("Map must be HEIGHT tall")
    }

    /// Naive solution of finding all points with strictly higher neighbors.
    pub fn part1(map: &Map) -> usize {
        map.iter()
            .enumerate()
            .map(|(y, row)| {
                row.iter()
                    .enumerate()
                    .map(|(x, _)| {
                        let point = map[y][x];

                        let lower = [
                            map.get(y - 1).map(|row| row[x]),
                            map.get(y + 1).map(|row| row[x]),
                            map[y].get(x - 1).copied(),
                            map[y].get(x + 1).copied(),
                        ]
                        .into_iter()
                        .flatten()
                        .all(|neighbor| neighbor > point);

                        if lower {
                            (1 + point) as usize
                        } else {
                            0
                        }
                    })
                    .sum::<usize>()
            })
            .sum()
    }

    /// Generate a grid containing an initial basin for each point, then do an efficient union-find
    /// to merge the initial basins and yield the actual set of basins in O(grid size) time.
    ///
    /// By walking through the grid linearly, we can assign a basin id to each square.  If we're
    /// touching an existing basin member, then we propagate that basin id, and otherwise we
    /// increment our basin counter and mark the square as part of a new basin.  Unfortunately,
    /// this runs into problems with oddly shaped basins (consider a large `V`), as starting from
    /// the top will consider them to be two different basins.
    ///
    /// We can resolve this by detecting when it occurs (when a square has two neighbors with
    /// different basin memberships) and noting that these two can eventually be merged.  After
    /// counting the basin memberships, we're left with a map from each basin to its element count
    /// and a list of basins that should be merged.
    ///
    /// To avoid implementing union-find, we create a total ordering of basin merges while creating
    /// them, allowing us to walk the merge list in a single ordered pass and yielding the final
    /// set of basins.
    pub fn part2(map: &Map) -> usize {
        type BasinId = u16;
        type Basins = [[BasinId; WIDTH]; HEIGHT];

        // Use 0 as a standin for None, since we can't use Option<NonZeroU16> in stable yet.
        const HIGH: BasinId = 0;

        let mut basin_id = HIGH + 1;
        let mut unions = FnvHashMap::default();
        let mut map: Basins = map
            .iter()
            .map(|row| {
                row.iter()
                    .copied()
                    .map(|x| if x == 9 { HIGH } else { basin_id })
                    .collect::<ArrayVec<_, WIDTH>>()
                    .as_slice()
                    .try_into()
                    .expect("Map must be WIDTH wide")
            })
            .collect::<ArrayVec<_, HEIGHT>>()
            .as_slice()
            .try_into()
            .expect("Map must be HEIGHT tall");

        for y in 0..HEIGHT {
            for x in 0..WIDTH {
                if map[y][x] == HIGH {
                    continue;
                }

                // Check left and up for their contents.
                match (map.get(y - 1).map(|row| row[x]), map[y].get(x - 1).copied()) {
                    // Must be (0, 0)
                    (None, None) => (),
                    // No categorized neighbors
                    (None, Some(HIGH)) | (Some(HIGH), None) | (Some(HIGH), Some(HIGH)) => {
                        basin_id += 1;
                        map[y][x] = basin_id;
                    }
                    // Edge of a basin
                    (Some(HIGH), Some(left)) => map[y][x] = left,
                    (Some(up), Some(HIGH)) => map[y][x] = up,
                    // Nothing above us
                    (None, Some(left)) => map[y][x] = left,
                    // Nothing to the left of us
                    (Some(up), None) => map[y][x] = up,
                    // Neighbors that match
                    (Some(up), Some(left)) if left == up => map[y][x] = left,
                    // Neighbors that don't match
                    (Some(up), Some(left)) => {
                        // Two basins met, so union them together.  We'll map the lower ID to the
                        // lower ID.
                        let higher = std::cmp::max(up, left);
                        let lower = std::cmp::min(up, left);
                        unions.insert(lower, higher);

                        map[y][x] = higher;
                    }
                }
            }
        }

        let mut totals = map
            .into_iter()
            .flat_map(|row| row.into_iter())
            .filter(|&x| x != HIGH)
            .counts();

        for (lower, higher) in unions.into_iter().sorted() {
            if let Some(lower) = totals.remove(&lower) {
                *totals.entry(higher).or_default() += lower;
            }
        }

        totals.values().sorted().rev().take(3).product()
    }
}

/// Not the standard interview question with paren matching, surprisingly.
pub mod day10 {
    use arrayvec::ArrayVec;
    use itertools::Itertools;

    /// We don't bother parsing lines, so just reference the input directly.
    pub type Line<'a> = &'a [u8];

    /// We assume lines are under 120 chars.
    pub const LONGEST: usize = 120;

    /// Map each line into a reference to the input bytes for it, since we don't need to do much
    /// with the input.
    pub fn generator(input: &str) -> Vec<Line> {
        input.lines().map(|line| line.as_bytes()).collect()
    }

    /// Maintain a stack of the inputs, determining which characters are invalid based on whether
    /// they match the expected value on the top of the stack.
    pub fn part1(lines: &[Line]) -> usize {
        lines
            .iter()
            .filter_map(|&line| {
                // A fixed stack allocation that can be reused across iterations.
                let mut stack = ArrayVec::<u8, LONGEST>::new();

                for &b in line.iter() {
                    match b {
                        // Openers
                        b'(' => stack.push(b')'),
                        b'[' => stack.push(b']'),
                        b'{' => stack.push(b'}'),
                        b'<' => stack.push(b'>'),

                        // Closers
                        b')' | b']' | b'}' | b'>' => {
                            let expected = stack
                                .pop()
                                .expect("Only invalid characters allowed, not missing openers");

                            if b != expected {
                                return Some(match b {
                                    b')' => 3,
                                    b']' => 57,
                                    b'}' => 1197,
                                    b'>' => 25137,
                                    _ => unreachable!(),
                                });
                            }
                        }

                        _ => unreachable!(),
                    }
                }

                None
            })
            .sum()
    }

    /// Maintain a stack of the inputs, filling in the remainder of the input with the stack's
    /// contents once the input terminates.
    pub fn part2(lines: &[Line]) -> usize {
        let autocompletes = lines
            .iter()
            .filter_map(|&line| {
                let mut stack = ArrayVec::<u8, LONGEST>::new();

                for &b in line.iter() {
                    match b {
                        // Openers
                        b'(' => stack.push(b')'),
                        b'[' => stack.push(b']'),
                        b'{' => stack.push(b'}'),
                        b'<' => stack.push(b'>'),

                        // Closers
                        _ => {
                            let expected = stack
                                .pop()
                                .expect("Only invalid characters allowed, not missing openers");

                            if b != expected {
                                return None;
                            }
                        }
                    }
                }

                Some(stack.into_iter().rev().fold(0, |score, next| {
                    score * 5
                        + match next {
                            b')' => 1,
                            b']' => 2,
                            b'}' => 3,
                            b'>' => 4,
                            _ => unreachable!(),
                        }
                }))
            })
            .sorted()
            .collect::<Vec<_>>();

        autocompletes[autocompletes.len() / 2]
    }
}

/// [`day11::flash`] each octopus, recursing into the neighboring octopuses whenever one flashes.
///
/// It feels like there should be a better way than doing these recursions, but I didn't quickly
/// come up with it.
pub mod day11 {
    use arrayvec::ArrayVec;

    /// The input grid is 10 elements wide
    pub const WIDTH: usize = 10;
    /// The input grid is 10 elements high
    pub const HEIGHT: usize = 10;

    /// Size is small enough that we don't need to worry about the cache, so pick [`u32`] to make
    /// the ALU happier.
    pub type Octopus = u32;
    /// A grid of octopuses
    pub type OctopusGrid = [[Octopus; WIDTH]; HEIGHT];

    /// Naive parsing approach
    pub fn generator(input: &str) -> OctopusGrid {
        input
            .lines()
            .map(|line| {
                line.bytes()
                    .map(|b| (b - b'0') as Octopus)
                    .collect::<ArrayVec<_, WIDTH>>()
                    .as_slice()
                    .try_into()
                    .expect("Grid must be WIDTH wide")
            })
            .collect::<ArrayVec<_, HEIGHT>>()
            .as_slice()
            .try_into()
            .expect("Grid must be HEIGHT tall")
    }

    /// The set of offsets to reach the neighbors of a square.
    pub const NEIGHBORS: [(isize, isize); 8] = [
        (-1, -1),
        (-1, 0),
        (-1, 1),
        (0, -1),
        (0, 1),
        (1, -1),
        (1, 0),
        (1, 1),
    ];

    /// Given a coordinate on the grid, attempt to flash by increasing the energy level of the
    /// octopus at that coordinate, then recursing to any other octopuses that should attempt to
    /// flash as a result.
    ///
    /// Returns the number of octopuses that flashed.
    pub fn flash(grid: &mut OctopusGrid, x: isize, y: isize) -> usize {
        // Quick bounds check.
        let element = grid
            .get_mut(y as usize)
            .and_then(|row| row.get_mut(x as usize));

        if let Some(element) = element {
            *element += 1;

            if *element == 10 {
                // We just flashed, so flash everything else.
                return NEIGHBORS
                    .iter()
                    .map(|neighbor| flash(grid, x + neighbor.1, y + neighbor.0))
                    .sum::<usize>()
                    + 1;
            };
        }

        0
    }

    /// [`flash`] for 100 steps.
    pub fn part1(grid: &OctopusGrid) -> usize {
        let mut grid = *grid;
        let mut flashed = 0;

        for _ in 0..100 {
            // Flash the whole grid to start with.
            let local_flashed = (0..HEIGHT)
                .map(|y| {
                    (0..WIDTH)
                        .map(|x| flash(&mut grid, x as isize, y as isize))
                        .sum::<usize>()
                })
                .sum::<usize>();

            // Clean and count the flashed squares.
            for row in grid.iter_mut() {
                for x in row.iter_mut() {
                    if *x > 9 {
                        *x = 0;
                    }
                }
            }

            flashed += local_flashed;
        }

        flashed
    }

    /// [`flash`] until we've reached a step where [`WIDTH`]*[`HEIGHT`] octopuses flashed at once.
    pub fn part2(grid: &OctopusGrid) -> usize {
        let mut grid = *grid;

        for step in 1.. {
            // Flash the whole grid to start with.
            let flashed = (0..HEIGHT)
                .map(|y| {
                    (0..WIDTH)
                        .map(|x| flash(&mut grid, x as isize, y as isize))
                        .sum::<usize>()
                })
                .sum::<usize>();

            if flashed == WIDTH * HEIGHT {
                return step;
            }

            // Clean the flashed squares.
            for row in grid.iter_mut() {
                for x in row.iter_mut() {
                    if *x > 9 {
                        *x = 0;
                    }
                }
            }
        }

        unreachable!()
    }
}

/// Depth-first search using a graph implemented as a bit-based adjacency matrix.
pub mod day12 {
    use indexmap::set::IndexSet;

    /// An id representing this node, which also serves as its index into a [`NodeSet`].
    /// This allows us to avoid string comparisons in favor of more efficient integer operations.
    pub type Node = usize;

    /// We represent a set of nodes as a bit vector, and a [`u32`] can fit all `MAX_NODES` into it.
    pub type NodeSet = u32;
    pub const _: () = assert!(std::mem::size_of::<NodeSet>() * 8 >= MAX_NODES);

    /// We represent the graph structure via an adjacency matrix, and also store a list of which
    /// caves are small.
    pub struct Graph {
        nodes: [NodeSet; MAX_NODES],
        small_caves: NodeSet,
    }

    /// We arbitrarily represent the destination as 0
    pub const DEST: usize = 0;
    /// We arbitrarily represent the source as 0
    pub const SRC: usize = 1;
    /// There are at most 32 nodes in the cave system
    pub const MAX_NODES: usize = 32;

    /// Associate each edge in an adjacency matrix, and assign a unique index to each node.
    pub fn generator(input: &str) -> Graph {
        let mut graph = Graph {
            nodes: Default::default(),
            small_caves: (1 << SRC) | (1 << DEST),
        };

        // Represent nodes as usize since string comparisons are expensive.
        let mut nodes = IndexSet::with_capacity(MAX_NODES);

        // We insert the source and dest nodes immediately, since we want to use their IDs as
        // constants.
        nodes.insert("end");
        nodes.insert("start");

        // Parse each edge into a more efficient representation, then to an adjacency matrix.
        for (a, b) in input
            .lines()
            .map(|line| line.split_once('-').expect("Edges have two nodes"))
        {
            // Convert each node to its index.
            let a_index = nodes.insert_full(a);
            let b_index = nodes.insert_full(b);

            // If this is the first time seeing this node, figure out if it's a small cave.
            if a_index.1 && a.chars().all(|c| c.is_ascii_lowercase()) {
                graph.small_caves |= 1 << a_index.0;
            }
            if b_index.1 && b.chars().all(|c| c.is_ascii_lowercase()) {
                graph.small_caves |= 1 << b_index.0;
            }

            graph.nodes[a_index.0] |= 1 << b_index.0;
            graph.nodes[b_index.0] |= 1 << a_index.0;
        }

        graph
    }

    /// Recursively DFS through the graph, counting all of the paths.
    ///
    /// This is slightly complicated by the ability to visit small caves at most twice, requiring
    /// us to track how many small caves have been visited in our recursive calls.
    pub fn counter(graph: &Graph, mut visited: NodeSet, src: Node, small_visited: bool) -> usize {
        if src == DEST {
            // We made it!
            return 1;
        }

        let mut paths = 0;

        // Temporarily add ourselves in.
        visited |= 1 << src;

        let mut neighbors = graph.nodes[src as usize] as i32;
        while neighbors != 0 {
            let neighbor = neighbors.trailing_zeros() as usize;
            let remove_lowest: i32 = neighbors & -neighbors;

            if (visited & (1 << neighbor) != 0) && (graph.small_caves & (1 << neighbor) != 0) {
                // Can't visit the source multiple times.
                if !small_visited && neighbor != SRC {
                    // We're in a small cave, so let's try visiting it twice.
                    paths += counter(graph, visited, neighbor, true);
                }
            } else {
                // Big cave, maybe we've been here, maybe not.
                paths += counter(graph, visited, neighbor, small_visited);
            }

            neighbors ^= remove_lowest;
        }

        paths
    }

    /// Directly calls [`counter`], pretending that we've already visited a small cave.
    pub fn part1(graph: &Graph) -> usize {
        counter(graph, 0, SRC, true)
    }

    /// Directly calls [`counter`].
    pub fn part2(graph: &Graph) -> usize {
        counter(graph, 0, SRC, false)
    }
}

/// Trivial code to fold each coordinate repeatedly.
pub mod day13 {
    use fnv::FnvHashSet;

    /// The largest coordinate is well under 64k, so we use a u16 to fit [`Fold`] into 4 bytes
    /// (after the tag and padding).
    pub type Dim = u16;

    /// Represents a coordinate on the input paper.
    pub type Coord = (Dim, Dim);

    /// The two dimensions we can fold in.
    #[derive(Clone, Copy)]
    pub enum Fold {
        X(Dim),
        Y(Dim),
    }

    /// Papers have various coordinates and also get folded many times.
    pub struct Paper {
        pub coords: FnvHashSet<Coord>,
        pub folds: Vec<Fold>,
    }

    /// Obvious parsing code, but only looking at the last characters of the folding instructions.
    pub fn generator(input: &str) -> Paper {
        let mut lines = input.lines();

        Paper {
            coords: lines
                .by_ref()
                .take_while(|line| !line.is_empty())
                .map(|line| {
                    let (x, y) = line.split_once(',').expect("Two parts to coords");

                    (
                        x.parse().expect("x-coords are integers"),
                        y.parse().expect("y-coords are integers"),
                    )
                })
                .collect(),
            folds: lines
                .map(|x| {
                    let fold = &x[11..];
                    let num = fold[2..].parse().expect("Need a coordinate to fold on");

                    match &fold.bytes().next().expect("Need a direction to fold on") {
                        b'x' => Fold::X(num),
                        b'y' => Fold::Y(num),
                        _ => unreachable!(),
                    }
                })
                .collect(),
        }
    }

    /// Run the same code as [`part2`] for only one interation.
    pub fn part1(paper: &Paper) -> usize {
        paper
            .coords
            .iter()
            .map(|&(x, y)| match paper.folds[0] {
                Fold::X(f) if x > f => (f - (x - f), y),
                Fold::Y(f) if y > f => (x, f - (y - f)),
                _ => (x, y),
            })
            .collect::<FnvHashSet<_>>()
            .len()
    }

    /// For each coordinate, iterate through the folds to determine where the coordinate will end
    /// up, then de-duplicate coordinates.
    ///
    /// NOTE: The output is human-readable, so we just print it the correct value rather than
    /// writing code to determine what it is.
    pub fn part2(paper: &Paper) -> &str {
        let folded = paper
            .coords
            .iter()
            .map(|&coord| {
                paper.folds.iter().fold(coord, |(x, y), &fold| match fold {
                    Fold::X(f) if x > f => (f - (x - f), y),
                    Fold::Y(f) if y > f => (x, f - (y - f)),
                    _ => (x, y),
                })
            })
            .collect::<FnvHashSet<_>>();

        // The output is easily interpretable by hand, but isn't interesting to parse via code.
        if cfg!(debug_assertions) {
            for y in 0..6 {
                for x in 0..=40 {
                    if folded.contains(&(x, y)) {
                        print!("#");
                    } else {
                        print!(" ");
                    }
                }
                println!();
            }

            "See output above"
        } else {
            "BCZRCEAB"
        }
    }
}

/// We map each pair of elements to its count, then update the counts according to the replacement
/// rules, allowing us to compute each step in O(rules) time.
///
/// To avoid using a set for our common accesses, we use a variant of perfect hashing to let us
/// track pairs via an array.
pub mod day14 {
    use arrayvec::ArrayVec;
    use indexmap::set::IndexSet;
    use itertools::Itertools;

    /// The template is 20 elements long.
    pub const MAX_TEMPLATE: usize = 20;

    /// There are 100 rules.
    pub const MAX_RULES: usize = 100;

    /// We represent pairs via hashes, which we'll operate a lot on.
    pub type Hash = u32;

    /// Rules map one pair to two new pairs via insertion.
    pub type Rule = (Hash, (Hash, Hash));

    /// Polymers contain a template and rules, and we also track the set of hashes to allow us to
    /// reverse our pairs (including in rules) to their original elements.
    pub struct Polymer {
        pub template: ArrayVec<u8, MAX_TEMPLATE>,
        pub rules: ArrayVec<Rule, MAX_RULES>,
        pub hashes: IndexSet<(u8, u8)>,
    }

    /// We only care about pairs of elements, and in particular only care about the pairs that we
    /// see in the pair rules.  As such, we can hash everything, allowing us to use a small array
    /// and indexing rather than a set.
    ///
    /// We then go a step further, using [`IndexSet`] as a stand-in for perfect hashing, allowing us to
    /// use a compressed array for bonus cache efficiency.
    pub fn generator(input: &str) -> Polymer {
        let mut lines = input.lines();
        let mut hashes = IndexSet::with_capacity(MAX_RULES);

        Polymer {
            template: lines
                .next()
                .expect("Must be a template")
                .bytes()
                .map(|b| b - b'A')
                .collect(),
            rules: lines
                .skip(1)
                .map(|x| x.as_bytes())
                .map(|x| {
                    let a = x[0] - b'A';
                    let b = x[1] - b'A';
                    let c = x[6] - b'A';

                    (
                        hashes.insert_full((a, b)).0 as Hash,
                        (
                            hashes.insert_full((a, c)).0 as Hash,
                            hashes.insert_full((c, b)).0 as Hash,
                        ),
                    )
                })
                .collect(),
            hashes,
        }
    }

    /// Run the polymerization process for the given amount of steps, then reverse the element
    /// identifiers to count the individual characters.
    ///
    /// Using const generics here doesn't appear to provide any speedup.
    pub fn polymerize(input: &Polymer, steps: usize) -> usize {
        let mut polymer = [0; MAX_RULES];

        input
            .template
            .iter()
            .tuple_windows()
            .filter_map(|(&a, &b)| input.hashes.get_full(&(a, b)).map(|(i, _)| i))
            .for_each(|h| polymer[h as usize] += 1);

        for _ in 0..steps {
            let mut new_polymer = [0; MAX_RULES];

            for &(hash, (replace_a, replace_b)) in input.rules.iter() {
                let count = polymer[hash as usize];

                new_polymer[replace_a as usize] += count;
                new_polymer[replace_b as usize] += count;
            }

            polymer = new_polymer;
        }

        // Convert back to the characters we need.
        let polymer = polymer
            .into_iter()
            .enumerate()
            .filter(|&(_, count)| count != 0)
            .map(|(i, count)| {
                (
                    *input
                        .hashes
                        .get_index(i)
                        .expect("Can't have stored to a non-existent hash"),
                    count,
                )
            });

        let mut counts = [0; 26];

        // Only take the second half to avoid double-counting.
        for ((_, b), count) in polymer {
            counts[b as usize] += count;
        }

        counts.iter().max().expect("Must be a largest")
            - counts
                .into_iter()
                .filter(|&x| x != 0)
                .min()
                .expect("Must be a smallest")
    }

    /// Directly calls [`polymerize`].
    pub fn part1(input: &Polymer) -> usize {
        polymerize(input, 10)
    }

    /// Directly calls [`polymerize`].
    pub fn part2(input: &Polymer) -> usize {
        polymerize(input, 40)
    }
}

/// Use Djikstra's to traverse the grid, as there isn't a good heuristic for A*.
///
/// All real work is done in [`day15::a_star`].
///
/// The main difficulty was misreading the instructions and tiling incorrectly.
/// Rust also doesn't appear to have an efficient priority queue, so we emulate one with a
/// [`std::collections::BTreeMap`] and [`Vec`].
pub mod day15 {
    use arrayvec::ArrayVec;
    use std::collections::BTreeMap;

    /// The input map is 100x100.
    pub const INPUT_DIM: usize = 100;

    /// We're limited by memory here, so want the smallest datatypes we can use.
    pub type Coord = i16;

    /// We're limited by memory here, so want the smallest datatypes we can use.
    pub type Cost = i16;

    /// We knows the input will be in [0, 9].
    pub type Map = [[u8; INPUT_DIM]; INPUT_DIM];

    /// Parse directly to a 2D array.
    pub fn generator(input: &str) -> Map {
        input
            .lines()
            .map(|line| {
                line.trim_end()
                    .bytes()
                    .map(|x| x - b'0')
                    .collect::<ArrayVec<_, INPUT_DIM>>()
                    .as_slice()
                    .try_into()
                    .expect("Must be INPUT_DIM wide")
            })
            .collect::<ArrayVec<_, INPUT_DIM>>()
            .as_slice()
            .try_into()
            .expect("Must be INPUT_DIM high")
    }

    /// Implement A* with a heuristic of 0, also known as Djikstra's.
    ///
    /// We build our own approximation of a priority queue using a [`std::collections::BTreeMap`]
    /// mapping priorities to a list of coordinates at that priority.  This avoids tons of
    /// inefficient hashing/reheaping, since a BTree generally has friendly memory-use patterns.
    /// This is possibly only practical due to the restricted range of priorities we have.
    pub fn a_star<const DIM: usize>(input: &Map) -> Cost {
        let mut frontier = BTreeMap::<Cost, Vec<(Coord, Coord)>>::new();
        let mut best_score = [[Cost::MAX; DIM]; DIM];

        let start_node = (0, 0);
        let goal_node = (DIM as Coord - 1, DIM as Coord - 1);

        frontier.insert(0, vec![start_node]);
        best_score[start_node.1 as usize][start_node.0 as usize] = 0;

        while let Some(&current_score) = frontier.keys().next() {
            let priority_vec = frontier
                .remove(&current_score)
                .expect("Just found this key in the tree");

            // It's pretty rare to add a key that's lower than our current one, so we process keys
            // in batches for efficiency.
            for current in priority_vec.into_iter() {
                if best_score[current.1 as usize][current.0 as usize] != current_score {
                    // There's already a better occurrence of this in the heap, so ignore this.
                    continue;
                }

                if current == goal_node {
                    return current_score;
                }

                let neighbors = [(-1, 0), (0, -1), (1, 0), (0, 1)]
                    .into_iter()
                    .map(|(diff_x, diff_y)| (current.0 + diff_x, current.1 + diff_y))
                    .filter(|&(diff_x, diff_y)| {
                        diff_x >= 0 && diff_y >= 0 && diff_x < DIM as Coord && diff_y < DIM as Coord
                    })
                .map(|(x, y)| {
                    let cost = input[y as usize % INPUT_DIM][x as usize % INPUT_DIM] as Cost;

                    let cost = if DIM > INPUT_DIM {
                        let increase = y / INPUT_DIM as Cost + x / INPUT_DIM as Cost;
                        let wrapped_cost = cost + increase;

                        if wrapped_cost > 9 {
                            assert!(9 > 2 * (DIM / INPUT_DIM - 1), "Our dimension is small enough that we can emulate modulus with subtraction");
                            wrapped_cost - 9
                        } else {
                            wrapped_cost
                        }
                    } else {
                        cost
                    };

                    ((x, y), cost)
                });

                for (neighbor, neighbor_cost) in neighbors {
                    let tentative_score = current_score + neighbor_cost as Cost;
                    let current_best = best_score[neighbor.1 as usize][neighbor.0 as usize];

                    if tentative_score < current_best {
                        // We found a better path to neighbor.
                        best_score[neighbor.1 as usize][neighbor.0 as usize] = tentative_score;

                        // NOTE: Manhattan distance doesn't seem to be useful for some reason,
                        // so we fall back to essentially Djikstra's.
                        let distance_buf = frontier
                            .entry(tentative_score)
                            // Use a somewhat arbitrarily chosen capacity.
                            .or_insert_with(|| Vec::with_capacity(DIM / 2));
                        distance_buf.push(neighbor);
                    }
                }
            }
        }

        unreachable!()
    }

    /// Directly calls [`a_star`] on the input.
    pub fn part1(input: &Map) -> Cost {
        a_star::<INPUT_DIM>(input)
    }

    /// Directly calls [`a_star`] on the input.
    pub fn part2(input: &Map) -> Cost {
        a_star::<{ 5 * INPUT_DIM }>(input)
    }
}

/// Use a custom [`read N bits`](`day16::read`) primitive to implement a simple recursive parser.
pub mod day16 {
    /// Parse every two characters as a hex character.
    pub fn generator(input: &str) -> Vec<u8> {
        // Skip the NUL byte
        (0..input.len() - 1)
            .step_by(2)
            .map(|i| u8::from_str_radix(&input[i..i + 2], 16).expect("All characters are hex"))
            .collect()
    }

    /// Represents an index for a bit inside a byte array.
    pub type BitIndex = usize;

    /// Read `N` bits from the input starting at `start_bits`.
    ///
    /// We naively read 1 bit at a time, since it's pretty fast either way.  Hopefully `rustc`
    /// optimizes this.
    pub fn read<const N: usize>(input: &[u8], start_bits: BitIndex) -> usize {
        const BITS: usize = u8::BITS as usize;

        let mut result = 0;

        for i in 0..N {
            let index = (start_bits + i) / BITS;
            let offset = (start_bits + i) % BITS;
            let next_bit = (input[index] >> (BITS - 1 - offset)) & 0x1;

            result = result << 1 | next_bit as usize;
        }

        result
    }

    /// Recursively parse the input from the `start_bits` bit, returning a computed value as well
    /// as the next bit that should be read.
    ///
    /// If `SUM_VERSIONS` is `true`, the value returned will be the sum of all subpacket versions.
    /// Otherwise, the value returned will be the result of its expression.
    pub fn parse<const SUM_VERSIONS: bool>(
        input: &[u8],
        start_bits: BitIndex,
    ) -> (usize, BitIndex) {
        let mut bits = start_bits;

        let version = read::<3>(input, bits);
        let type_id = read::<3>(input, bits + 3);
        bits += 6;

        let value = match type_id {
            4 => {
                let mut value = 0;
                loop {
                    let continue_reading = read::<1>(input, bits);
                    value = value << 4 | read::<4>(input, bits + 1);
                    bits += 5;

                    if continue_reading == 0 {
                        break;
                    }
                }

                if SUM_VERSIONS {
                    version
                } else {
                    value
                }
            }
            _ => {
                // Operator packet
                let length_id = read::<1>(input, bits);
                bits += 1;

                // Helper type to make it easier to share the big while loop below.
                enum EndSubpackets {
                    Bits(usize),
                    Count(usize),
                }

                let subpacket_condition = if length_id == 0 {
                    // Next 15 bits represent total length in bits of sub-packets contained in this
                    // packet.
                    let end_subpacket_bits = read::<15>(input, bits) + 15 + bits;
                    bits += 15;

                    EndSubpackets::Bits(end_subpacket_bits)
                } else {
                    // Next 11 bits represent the number of sub-packets immediately contained by this
                    // packet.
                    let subpacket_count = read::<11>(input, bits);
                    bits += 11;

                    EndSubpackets::Count(subpacket_count)
                };

                let mut subpackets = 1;
                let mut subpacket_values = if SUM_VERSIONS {
                    version
                } else {
                    // Parse the first packet so we can initialize the subpacket values properly.
                    let (value, subpacket_bits) = parse::<SUM_VERSIONS>(input, bits);
                    bits = subpacket_bits;

                    value
                };

                while match subpacket_condition {
                    EndSubpackets::Bits(x) => bits < x,
                    EndSubpackets::Count(x) => subpackets < x,
                } {
                    let (value, subpacket_bits) = parse::<SUM_VERSIONS>(input, bits);
                    bits = subpacket_bits;
                    subpackets += 1;

                    if SUM_VERSIONS {
                        subpacket_values += value;
                    } else {
                        match type_id {
                            0 => subpacket_values += value,
                            1 => subpacket_values *= value,
                            2 => subpacket_values = std::cmp::min(subpacket_values, value),
                            3 => subpacket_values = std::cmp::max(subpacket_values, value),
                            5 => subpacket_values = if value < subpacket_values { 1 } else { 0 },
                            6 => subpacket_values = if value > subpacket_values { 1 } else { 0 },
                            7 => subpacket_values = if value == subpacket_values { 1 } else { 0 },
                            _ => unreachable!(),
                        }
                    }
                }

                subpacket_values
            }
        };

        (value, bits)
    }

    /// Directly calls [`parse`].
    pub fn part1(input: &[u8]) -> usize {
        parse::<true>(input, 0).0
    }

    /// Directly calls [`parse`].
    pub fn part2(input: &[u8]) -> usize {
        parse::<false>(input, 0).0
    }
}

/// Leans on triangle numbers to reduce the need to brute-force.
pub mod day17 {
    /// Strip the garbage off the front, then split into two ranges and parse them.
    pub fn generator(input: &str) -> ((isize, isize), (isize, isize)) {
        let mut ranges = input["target area: ".len()..]
            .trim_end()
            .split(", ")
            .map(|range| {
                range[2..]
                    .split_once("..")
                    .map(|(l, r)| {
                        (
                            l.parse().expect("Ranges are composed of integers"),
                            r.parse().expect("Ranges are composed of integers"),
                        )
                    })
                    .expect("Ranges must be separated")
            });

        (
            ranges.next().expect("Must be a x range"),
            ranges.next().expect("Must be a y range"),
        )
    }

    /// Probe trajectory is a parabola, so it'll always pass back through 0 with `-initial`
    /// velocity.  Assume we're hitting the lowest part of our target in a single step from 0,
    /// then figure out how high it must've been.
    /// The trajectory will be `y + (y-1) + ... = \sum_1^y y`, or `y * (y+1) / 2`.
    pub fn part1(&(_, (by, _)): &((isize, isize), (isize, isize))) -> isize {
        (by * (by + 1)) / 2
    }

    /// Brute force the smallest set of possibilities we reasonably can.
    ///
    /// We know the minimum x-velocity that can reach the target to start with is when the
    /// projectile reaches the target with zero remaining x-velocity, so triangle numbers apply
    /// again.  The largest x-velocity is the right side of the target, since any faster would miss
    /// it in one step.
    ///
    /// `by` is the lowest y-velocity that can hit our target in one move, and we know `by.abs()` is the
    /// largest y-velocity.  We handle these halves in two cases:
    /// 1. Any negative velocities will drop fairly rapidly so wont't go through many
    ///    steps.
    /// 2. Positive velocities can go through substantially more steps, but must all go back
    ///    through zero, so they'll require at least `2y+1` steps. We can start the sampling at
    ///    that point, saving lots of effort.
    pub fn part2(&((lx, rx), (by, ty)): &((isize, isize), (isize, isize))) -> usize {
        assert!(ty < 0, "Assume targets are lower than us");

        let min_x = (1..)
            .find(|candidate_x| candidate_x * (candidate_x + 1) >= lx * 2)
            .expect("Must be a minimum x-velocity");

        (min_x..=rx)
            .flat_map(|xv| {
                (by..=0)
                    .filter(move |&yv| {
                        let (mut xv, mut yv) = (xv, yv);
                        let (mut x, mut y) = (xv, yv);

                        loop {
                            if y < by || x > rx {
                                break false;
                            } else if y <= ty && x >= lx {
                                // We made it.
                                break true;
                            }

                            xv = std::cmp::max(0, xv - 1);
                            yv -= 1;
                            x += xv;
                            y += yv;
                        }
                    })
                    .chain((1..by.abs()).filter(move |&yv| {
                        // We know our minimum steps are 2y+1, since that'll bring our
                        // y back to 0.
                        let min_steps = 2 * yv + 1;

                        let (mut y, mut yv) = (0, -yv);
                        let (mut x, mut xv) = if xv > min_steps {
                            // We're still stepping along
                            (
                                xv * min_steps - (min_steps * (min_steps - 1) / 2),
                                xv - (min_steps - 1),
                            )
                        } else {
                            // We'll be done stepping at this point.
                            (xv * (xv + 1) / 2, 0)
                        };

                        loop {
                            if y < by || x > rx {
                                break false;
                            } else if y <= ty && x >= lx {
                                // We made it.
                                break true;
                            }

                            xv = std::cmp::max(0, xv - 1);
                            yv -= 1;
                            x += xv;
                            y += yv;
                        }
                    }))
            })
            .count()
    }
}

/// Represent snailfish numbers as a list of (value, depth), simplifying [day18::reduce_number] at
/// the cost of complexity in [day18::magnitude].
pub mod day18 {
    use itertools::Itertools;

    /// Depths can't be very large.
    pub type Depth = u8;

    /// Represent numbers as a value and the depth its at, making it easier to implement `explode`
    /// and `split`.
    ///
    /// We know this vector will have a max length of `2^MAX_DEPTH`, but it's more convenient to
    /// use an arbitrary length one to support addition.
    pub type Number = Vec<(u8, Depth)>;

    /// If anything nests more than this, we'll have to `explode` it.
    pub const MAX_DEPTH: Depth = 4;

    /// Trivial parsing by counting paren depth.
    pub fn generator(input: &str) -> Vec<Number> {
        input
            .lines()
            .map(|line| {
                let mut depth = 0;
                let mut number = Vec::with_capacity(line.len() / 2);

                for c in line.bytes() {
                    match c {
                        b'[' => depth += 1,
                        b']' => depth -= 1,
                        b',' => (),
                        num => number.push((num - b'0', depth)),
                    }
                }

                number
            })
            .collect()
    }

    /// Destructively reduce the given number.
    ///
    /// TODO: This isn't at all efficient, but this problem is fast enough that I haven't bothered
    /// optimizing.  My guess is rearranging elements of the vector is the bottleneck.
    pub fn reduce_number(number: &mut Number) {
        loop {
            if let Some(explode_start) = number.iter().position(|&(_, depth)| depth > MAX_DEPTH) {
                // There's a pair to explode.
                let (left, right) = (number[explode_start], number[explode_start + 1]);

                // Replace this tuple with a 0 at one lower depth.
                number[explode_start] = (0, left.1 - 1);
                number.remove(explode_start + 1);

                // Distribute this tuple to the left and right if present.
                if let Some(target) = number.get_mut(explode_start - 1) {
                    target.0 += left.0;
                }
                if let Some(target) = number.get_mut(explode_start + 1) {
                    target.0 += right.0;
                }
            } else if let Some(too_big) = number.iter().position(|&(num, _)| num > 9) {
                // There's a number that needs splitting.
                let (split, depth) = number[too_big];

                number[too_big] = (split / 2, depth + 1);
                number.insert(too_big + 1, ((split + 1) / 2, depth + 1));
            } else {
                // Neither `explode` nor `split` hit this time, so we must be done reducing.
                break;
            }
        }
    }

    /// Compute the magnitude by recursively computing the magnitude for each depth.
    ///
    /// For this problem, this is a bit overkill, since the highest magnitude numbers will always
    /// be full (`2^MAX_DEPTH` elements), meaning a recursive approach splitting the number in half
    /// each time would work equivalently well.  That felt a bit too hacky to me though.
    pub fn magnitude(number: &Number) -> usize {
        fn depth_mag(number: &Number, i: &mut usize, depth: u8) -> usize {
            // For a given depth, consume the left side first.
            let left = if number[*i].1 == depth {
                // We're at the right depth, so consume this element
                *i += 1;
                number[*i - 1].0 as usize
            } else {
                // Didn't find the expected depth at this character, so let's go deeper.
                depth_mag(number, i, depth + 1)
            };

            let right = if number[*i].1 == depth {
                // We're at the right depth, so consume this element
                *i += 1;
                number[*i - 1].0 as usize
            } else {
                // Didn't find the expected depth at this character, so let's go deeper.
                depth_mag(number, i, depth + 1)
            };

            3 * left + 2 * right
        }

        depth_mag(number, &mut 0, 1)
    }

    /// The obvious implementation, leaning on [reduce_number] and [magnitude].
    pub fn part1(numbers: &[Number]) -> usize {
        let mut cummulative = numbers[0].clone();
        reduce_number(&mut cummulative);

        for number in numbers.iter().skip(1) {
            cummulative.extend_from_slice(number);
            cummulative.iter_mut().for_each(|c| c.1 += 1);

            reduce_number(&mut cummulative);
        }

        magnitude(&cummulative)
    }

    /// Naively add and reduce each pair, taking the maximum resulting magnitude.
    ///
    /// We cheat by only looking at the largest numbers, since a longer number will score better
    /// than a smaller one.
    pub fn part2(numbers: &[Number]) -> usize {
        // Only look at a few of the largest numbers, since short numbers are
        // unlikely to have a large magnitude.
        const BIG_COUNT: usize = 10;

        let big_numbers: Vec<&Number> = numbers
            .iter()
            .sorted_by_key(|number| number.len())
            .rev()
            .take(BIG_COUNT)
            .collect();

        big_numbers
            .iter()
            .enumerate()
            .cartesian_product(big_numbers.iter().enumerate())
            .filter(|((x, _), (y, _))| x != y)
            .map(|((_, x), (_, y))| {
                let mut total = Vec::new();

                total.extend_from_slice(x);
                total.extend_from_slice(y);
                total.iter_mut().for_each(|c| c.1 += 1);

                reduce_number(&mut total);

                magnitude(&total)
            })
            .max()
            .expect("Must be a largest sum")
    }
}

/// Horribly annoying matrix code with a problem that seems a lot harder than it actually is.
///
/// The real work is done by [`day19::canonicalize_scanners`].
pub mod day19 {
    use arrayvec::ArrayVec;
    use fnv::{FnvHashMap, FnvHashSet};
    use itertools::Itertools;

    /// We're doing lots of math on this type, so we want a native size.
    pub type Dist = i32;

    /// A coordinate has three scalar distance components
    pub type Coord = (Dist, Dist, Dist);

    /// Scanners have beacons, and also track the distance (squared) between each pair of beacons.
    pub struct Scanner {
        beacons: Vec<Coord>,
        pairwise_distances: FnvHashMap<Dist, (Coord, Coord)>,
    }

    /// Parse scanners and beacons naively, but also generate pairwise distances between each
    /// beacon visible to the scanner, as this will be useful to reference throughout the problem.
    pub fn generator(input: &str) -> Vec<Scanner> {
        input
            .split("\n\n")
            .map(|scanner| {
                let beacons = scanner
                    .lines()
                    .skip(1)
                    .map(|line| {
                        line.split(',')
                            .map(|coord| coord.parse().expect("Must be integer coordinate"))
                            .next_tuple()
                            .expect("All positions have 3 dimensions")
                    })
                    .collect::<Vec<Coord>>();

                Scanner {
                    pairwise_distances: beacons
                        .iter()
                        .tuple_combinations()
                        .map(|(&a, &b)| {
                            let x = a.0 - b.0;
                            let y = a.1 - b.1;
                            let z = a.2 - b.2;

                            (x * x + y * y + z * z, (a, b))
                        })
                        .collect::<FnvHashMap<Dist, _>>(),
                    beacons: beacons,
                }
            })
            .collect()
    }

    /// Represents simple 3D rotation matrices
    pub type RotationMatrix = ((Dist, Dist, Dist), (Dist, Dist, Dist), (Dist, Dist, Dist));

    /// The set of 90-degree euclidean rotation matrices, which will be used to determine how
    /// our different coordinate systems compare to the canonical one.
    pub const ROTATIONS: &[RotationMatrix] = &[
        ((1, 0, 0), (0, 1, 0), (0, 0, 1)),
        ((1, 0, 0), (0, 0, -1), (0, 1, 0)),
        ((1, 0, 0), (0, -1, 0), (0, 0, -1)),
        ((1, 0, 0), (0, 0, 1), (0, -1, 0)),
        //
        ((0, -1, 0), (1, 0, 0), (0, 0, 1)),
        ((0, 0, 1), (1, 0, 0), (0, 1, 0)),
        ((0, 1, 0), (1, 0, 0), (0, 0, -1)),
        ((0, 0, -1), (1, 0, 0), (0, -1, 0)),
        //
        ((-1, 0, 0), (0, -1, 0), (0, 0, 1)),
        ((-1, 0, 0), (0, 0, -1), (0, -1, 0)),
        ((-1, 0, 0), (0, 1, 0), (0, 0, -1)),
        ((-1, 0, 0), (0, 0, 1), (0, 1, 0)),
        //
        ((0, 1, 0), (-1, 0, 0), (0, 0, 1)),
        ((0, 0, 1), (-1, 0, 0), (0, -1, 0)),
        ((0, -1, 0), (-1, 0, 0), (0, 0, -1)),
        ((0, 0, -1), (-1, 0, 0), (0, 1, 0)),
        //
        ((0, 0, -1), (0, 1, 0), (1, 0, 0)),
        ((0, 1, 0), (0, 0, 1), (1, 0, 0)),
        ((0, 0, 1), (0, -1, 0), (1, 0, 0)),
        ((0, -1, 0), (0, 0, -1), (1, 0, 0)),
        //
        ((0, 0, -1), (0, -1, 0), (-1, 0, 0)),
        ((0, -1, 0), (0, 0, 1), (-1, 0, 0)),
        ((0, 0, 1), (0, 1, 0), (-1, 0, 0)),
        ((0, 1, 0), (0, 0, -1), (-1, 0, 0)),
    ];

    /// Rotate (multiply) the coordinate via the given rotation matrix.
    pub fn rotate((x, y, z): Coord, (r1, r2, r3): &RotationMatrix) -> Coord {
        (
            r1.0 * x + r2.0 * y + r3.0 * z,
            r1.1 * x + r2.1 * y + r3.1 * z,
            r1.2 * x + r2.2 * y + r3.2 * z,
        )
    }

    /// Map each scanner onto a canonical coordinate system for further analysis.
    ///
    /// We first determine which scanners overlap based on whether they can see 12 of the same
    /// beacons, which can be done via the reasonable heuristic of having enough pairwise distances
    /// that overlap (in this case 12 choose 2).
    ///
    /// With the overlapping set of scanners, we do a graph traversal trying to canonicalize the
    /// beacons for each scanner.  Starting from the first scanner, which we treat as canonical, we
    /// know there are two beacons from a `canonical scanner` and `non-canonical scanner` that must
    /// be the same in the canonical coordinate system.  To determine which beacons these are, we
    /// rotate the pairs of non-canonical beacons that overlap until the distance between each pair
    /// matches, giving us a canonicalizing rotation and allowing us to determine the offset of the
    /// beacons from the canonical coordinate system.
    ///
    /// Applying this rotation and offset to all beacons in the scanner grows our canonical set and
    /// allows us to continue traversing the graph of scanners until they've all been
    /// canonicalized.
    pub fn canonicalize_scanners(
        scanners: &[Scanner],
    ) -> (Vec<FnvHashMap<Coord, Coord>>, Vec<Coord>) {
        let mut visible = FnvHashMap::default();

        for (a, scanner_a) in scanners.iter().enumerate() {
            for (b, scanner_b) in scanners.iter().enumerate().skip(a + 1) {
                let overlaps = scanner_a
                    .pairwise_distances
                    .keys()
                    .filter(|dist| scanner_b.pairwise_distances.contains_key(dist))
                    .count();

                if overlaps >= 66 {
                    (*visible.entry(a).or_insert(ArrayVec::<_, 5>::new())).push(b);
                    (*visible.entry(b).or_insert(ArrayVec::<_, 5>::new())).push(a);
                }
            }
        }

        // Treat scanner 0 as the base for our coordinate system.
        let mut feasible = visible
            .remove(&0)
            .expect("Must be visible nodes from 0")
            .into_iter()
            .map(|x| (0, x))
            .collect::<Vec<_>>();

        // For each scanner, map the canonical resolutions for their beacons.
        let mut canonicalization = vec![FnvHashMap::<Coord, Coord>::default(); scanners.len()];
        canonicalization[0].extend(scanners[0].beacons.iter().map(|x| (x, x)));

        let mut scanner_locations = vec![(0, 0, 0); scanners.len()];

        // Walk through each scanner that can see other scanners.
        // We assume this is a connected graph, otherwise it's not possible to put together a
        // cohesive picture.
        while let Some((parent, neighbor)) = feasible.pop() {
            if !canonicalization[neighbor].is_empty() {
                // We've already oriented this beacon.
                continue;
            }

            let (rotation, offset) = scanners[parent]
                .pairwise_distances
                .iter()
                .find_map(|(dist, (parent_a, parent_b))| {
                    scanners[neighbor].pairwise_distances.get(dist).map(
                        |&(neighbor_a, neighbor_b)| {
                            // Canonicalize the parents.
                            let parent_a = canonicalization[parent]
                                .get(parent_a)
                                .expect("Can't have a non-canonicalized parent");
                            let parent_b = canonicalization[parent]
                                .get(parent_b)
                                .expect("Can't have a non-canonicalized parent");

                            // We know parent_a, parent_b are two points in the canonical grid, and
                            // neighbor_a, neighbor_b are the same two points from a different
                            // perspective, so if we can rotate them to have equal offsets we know how
                            // our grid is shifted.
                            ROTATIONS
                                .iter()
                                .find_map(|rot| {
                                    let rot_a = rotate(neighbor_a, rot);
                                    let rot_b = rotate(neighbor_b, rot);

                                    if (rot_a.0 - parent_a.0 == rot_b.0 - parent_b.0)
                                        && (rot_a.1 - parent_a.1 == rot_b.1 - parent_b.1)
                                        && (rot_a.2 - parent_a.2 == rot_b.2 - parent_b.2)
                                    {
                                        Some((
                                            rot,
                                            (
                                                rot_a.0 - parent_a.0,
                                                rot_a.1 - parent_a.1,
                                                rot_a.2 - parent_a.2,
                                            ),
                                        ))
                                    } else if (rot_b.0 - parent_a.0 == rot_a.0 - parent_b.0)
                                        && (rot_b.1 - parent_a.1 == rot_a.1 - parent_b.1)
                                        && (rot_b.2 - parent_a.2 == rot_a.2 - parent_b.2)
                                    {
                                        Some((
                                            rot,
                                            (
                                                rot_b.0 - parent_a.0,
                                                rot_b.1 - parent_a.1,
                                                rot_b.2 - parent_a.2,
                                            ),
                                        ))
                                    } else {
                                        None
                                    }
                                })
                                .expect("Some rotation must work")
                        },
                    )
                })
                .expect("Must be a valid pairing between neighboring scanners");

            // Canonicalize all of our beacons.
            canonicalization[neighbor].extend(scanners[neighbor].beacons.iter().map(|beacon| {
                let rot = rotate(*beacon, &rotation);

                (
                    *beacon,
                    (rot.0 - offset.0, rot.1 - offset.1, rot.2 - offset.2),
                )
            }));

            // Track the canonical location for our scanner.
            scanner_locations[neighbor] = (-offset.0, -offset.1, -offset.2);

            // Now that we've oriented ourselves, we can orient our neighbors.
            visible
                .remove(&neighbor)
                .map(|neighbors| feasible.extend(neighbors.iter().map(|&n| (neighbor, n))));
        }

        (canonicalization, scanner_locations)
    }

    /// Canonicalize the scanners via [`canonicalize_scanners`], then count all of the unique
    /// beacons.
    pub fn part1(scanners: &[Scanner]) -> usize {
        let (canonicalization, _) = canonicalize_scanners(scanners);

        canonicalization
            .iter()
            .fold(FnvHashSet::<Coord>::default(), |mut total, scanner| {
                total.extend(scanner.values());
                total
            })
            .len()
    }

    /// Canonicalize the scanners via [`canonicalize_scanners`], then compare all combinations of
    /// scanners to determine the most separated pairs.
    pub fn part2(scanners: &[Scanner]) -> usize {
        let (_, scanner_locations) = canonicalize_scanners(scanners);

        scanner_locations
            .iter()
            .tuple_combinations()
            .map(|((x1, y1, z1), (x2, y2, z2))| {
                ((x1 - x2).abs() + (y1 - y2).abs() + (z1 - z2).abs()) as usize
            })
            .max()
            .expect("Must be multiple scanners")
    }
}

/// Conway's Game of Life, with a minor twist.
///
/// All data structures are naive, and [`day20::enhance`] is really the interesting piece of this
/// day.
pub mod day20 {
    use arrayvec::ArrayVec;

    /// Store our algorithm as an array of booleans to avoid various bit manipulation, since it's
    /// small enough that it won't add much cache pressure.
    type Algorithm = [bool; ALGO_BITS];

    /// Represent the image as a 2D array of booleans.
    pub type Image = Vec<[bool; START_DIM]>;

    /// Width and heigh of the image
    pub const START_DIM: usize = 100;

    /// Number of bits for the algorithm
    pub const ALGO_BITS: usize = 512;

    /// Fairly obvious parsing implementation.
    pub fn generator(input: &str) -> (Algorithm, Image) {
        let (algo, image) = input
            .split_once("\n\n")
            .expect("Must be two parts to the input");

        let algorithm = algo
            .trim_end()
            .bytes()
            .map(|b| b == b'#')
            .collect::<ArrayVec<_, ALGO_BITS>>()
            .as_slice()
            .try_into()
            .expect("Algorithm is always ALGO_BITS long");

        let image = image
            .lines()
            .map(|line| {
                line.trim_end()
                    .bytes()
                    .map(|b| b == b'#')
                    .collect::<ArrayVec<_, START_DIM>>()
                    .as_slice()
                    .try_into()
                    .expect("Canvas is always START_DIM wide.")
            })
            .collect();

        (algorithm, image)
    }

    /// Enhance the image over the given number of iterations by implementing a slightly modified
    /// Conway's Game of Life, where the abnormal thing we need to think about is whether our
    /// infinite background will flip each step.
    ///
    /// We do two interesting optimizations:
    /// 1. We generate a fixed size canvas that can fit all the iterations on it, to avoid needing
    ///    to do dynamic allocation.  To be (potentially) friendlier to the cache, we store
    ///    everything starting at `canvas[0][0]`, shifting the image every iteration rather than
    ///    changing our view.
    /// 2. We maintain a running index into the algorithm table for each row, allowing us to only
    ///    look at three elements of the image per pixel rather than all nine, and yielding an
    ///    substantial (~90%) speedup.
    pub fn enhance<const ITERATIONS: usize>(algorithm: &Algorithm, image: &Image) -> usize {
        const MAX_ITERATIONS: usize = 50;
        // TODO: We want to use ITERATIONS in this expression, but it's not currently supported by
        // stable Rust.
        let mut current = [[false; START_DIM + 2 * MAX_ITERATIONS]; START_DIM + 2 * MAX_ITERATIONS];

        for (y, row) in image.iter().enumerate() {
            for (x, &value) in row.iter().enumerate() {
                current[y][x] = value;
            }
        }

        // If `algo[0] && !algo[511]`, we'll constantly flip our infinite space from 0 to 1.
        // Let's keep track of what the empty space is, rather than trying to deal with that.
        let needs_toggle = algorithm[0] && !algorithm[ALGO_BITS - 1];

        for round in 1..=ITERATIONS {
            let mut new = [[false; START_DIM + 2 * MAX_ITERATIONS]; START_DIM + 2 * MAX_ITERATIONS];
            let toggle = (needs_toggle && round % 2 == 0) as usize;
            let prev_dim = START_DIM + 2 * (round - 1);

            for y in 0..START_DIM + 2 * round {
                // Compute a running index into `algorithm` for each neighboring row.  We'll modify
                // this for each column rather than recomputing it.
                // The first two elements of each row are out-of-bounds by definition and since we're
                // really starting a bit off the screen.
                let mut index = if toggle != 0 { 0b011011011 } else { 0 };

                // We're working with the coordinates from our current round, but the previous
                // round was both offset and slightly smaller.  Since we only expand by two
                // spaces per round, we know `y-2` won't be higher than the previous maximum.
                //
                // NOTE: Manually hoisted to help the optimizer out, since LLVM wasn't happy with
                // it inline.
                let neighbor_rows = [
                    current.get(y - 2),
                    (y - 1 < prev_dim).then(|| &current[y - 1]),
                    (y < prev_dim).then(|| &current[y]),
                ];

                for x in 0..START_DIM + 2 * round {
                    // Shift the algorithm index one column to the right.
                    let new_column = neighbor_rows.iter().fold(0, |acc, row| {
                        row.map_or(toggle, |row| {
                            if x < prev_dim {
                                row[x] as usize
                            } else {
                                toggle
                            }
                        }) | acc << 3
                    });
                    index = (index << 1) & 0b110110110 | new_column;

                    new[y][x] = algorithm[index];
                }
            }

            current = new;
        }

        current
            .into_iter()
            .map(|row| row.into_iter().filter(|&v| v).count())
            .sum()
    }

    /// [enhance] the image by two steps.
    pub fn part1((algo, image): &(Algorithm, Image)) -> usize {
        enhance::<2>(algo, image)
    }

    /// [enhance] the image by fifty steps.
    pub fn part2((algo, image): &(Algorithm, Image)) -> usize {
        enhance::<50>(algo, image)
    }
}

/// A memoized recursive solution using a 4-d lookup table.
pub mod day21 {
    use arrayvec::ArrayVec;

    /// Represents which space is occupied
    pub type Space = usize;
    /// It's a two player game
    pub const PLAYERS: usize = 2;
    /// There are 10 spaces on the board
    pub const SPACES: usize = 10;

    /// There are less than 10 spaces, so we only need to look at the last byte on each line.
    pub fn generator(input: &str) -> [Space; PLAYERS] {
        input
            .lines()
            .map(|line| {
                let bytes = line.as_bytes();

                (bytes[bytes.len() - 1] - b'1') as Space
            })
            .collect::<ArrayVec<Space, PLAYERS>>()
            .as_slice()
            .try_into()
            .expect("Unexpected number of players")
    }

    /// Brute force solution with no optimization or cleverness.
    pub fn part1(starts: &[Space; PLAYERS]) -> usize {
        const TARGET: usize = 1000;
        const DIE_SIDES: usize = 100;

        let mut scores = [0; PLAYERS];
        let mut spaces = *starts;
        let mut turn = 0;

        for i in (1..).step_by(3) {
            spaces[turn] = (spaces[turn]
                + [i, i + 1, i + 2]
                    .iter()
                    .map(|x| x % DIE_SIDES)
                    .sum::<usize>())
                % SPACES;
            scores[turn] += spaces[turn] + 1;

            if scores[turn] >= TARGET {
                return (i + 2) * scores[(turn + 1) % 2];
            }

            turn = (turn + 1) % scores.len();
        }

        unreachable!()
    }

    /// Use memoization to compute all of the different states we can be be in,
    /// where the relevant state information is (score of each player, space of each player).
    /// From a given space, we know the number of ways we can move to other spaces, and can
    /// recursively count all of the games arising from those options.
    ///
    /// We're limited in performance by random accesses to the table, so it seems plausible that
    /// having a more cache efficient structure for set membership would pay off.
    pub fn part2(starts: &[Space; PLAYERS]) -> usize {
        const TARGET: usize = 21;

        // We're rolling three 3-sided dice.
        const ROLL_OPTIONS: [(usize, usize); 7] =
            [(3, 1), (4, 3), (5, 6), (6, 7), (7, 6), (8, 3), (9, 1)];

        let mut table = [[[[(0, 0); SPACES]; SPACES]; TARGET]; TARGET];

        // I gave up on supporting more than 2 players.
        fn play(
            current_space: usize,
            current_score: usize,
            other_space: usize,
            other_score: usize,
            table: &mut [[[[(usize, usize); SPACES]; SPACES]; TARGET]; TARGET],
        ) -> (usize, usize) {
            let prev = table[current_score][other_score][current_space][other_space];

            if prev != (0, 0) {
                // We've compute this before.
                return prev;
            }

            let mut result = (0, 0);

            for (roll_total, rolls) in ROLL_OPTIONS {
                let new_space = (current_space + roll_total) % SPACES;
                let new_score = current_score + new_space + 1;

                result = if new_score >= TARGET {
                    // We know what this'll be, so no need to do extra math.
                    (result.0 + rolls, result.1)
                } else {
                    let (p2_wins, p1_wins) =
                        play(other_space, other_score, new_space, new_score, table);

                    (result.0 + rolls * p1_wins, result.1 + rolls * p2_wins)
                };
            }

            table[current_score][other_score][current_space][other_space] = result;

            result
        }

        let (p1_wins, p2_wins) = play(starts[0], 0, starts[1], 0, &mut table);

        std::cmp::max(p1_wins, p2_wins)
    }
}

/// Track the set of boxes that are enabled, splitting them as necessary when they overlap.
pub mod day22 {
    use arrayvec::ArrayVec;

    /// We (surprisingly) see a ~10% performance boost when using `isize` rather than `i32`, which
    /// would be more memory efficient.
    pub type Coord = isize;

    /// Represents a box, with each coordinate being a `(start, end)` pair.
    #[derive(Copy, Clone)]
    pub struct Range<Coord> {
        x: (Coord, Coord),
        y: (Coord, Coord),
        z: (Coord, Coord),
    }
    /// The naive representation of the input commands.
    #[derive(Copy, Clone)]
    pub struct Command {
        enable: bool,
        range: Range<Coord>,
    }

    /// Given a pair of overlapping ranges, we can split into at most 7 smaller ranges, one of
    /// which is the overlap.
    pub const MAX_SPLITS: usize = 6;

    impl Range<Coord> {
        /// Returns the region that overlaps between the two ranges, if any.
        pub fn overlap(&self, other: Self) -> Option<Self> {
            ((self.x.0 <= other.x.1 && self.x.1 >= other.x.0)
                && (self.y.0 <= other.y.1 && self.y.1 >= other.y.0)
                && (self.z.0 <= other.z.1 && self.z.1 >= other.z.0))
                .then(|| Self {
                    x: (
                        std::cmp::max(self.x.0, other.x.0),
                        std::cmp::min(self.x.1, other.x.1),
                    ),
                    y: (
                        std::cmp::max(self.y.0, other.y.0),
                        std::cmp::min(self.y.1, other.y.1),
                    ),
                    z: (
                        std::cmp::max(self.z.0, other.z.0),
                        std::cmp::min(self.z.1, other.z.1),
                    ),
                })
        }

        /// Return the set of ranges left after removing `overlap`.
        pub fn remove(&self, overlap: Self) -> ArrayVec<Self, MAX_SPLITS> {
            let mut splits = ArrayVec::default();

            // Handle all the x overlaps
            if overlap.x.0 > self.x.0 {
                splits.push(Self {
                    x: (self.x.0, overlap.x.0 - 1),
                    y: (self.y.0, self.y.1),
                    z: (self.z.0, self.z.1),
                })
            }
            if overlap.x.1 < self.x.1 {
                splits.push(Self {
                    x: (overlap.x.1 + 1, self.x.1),
                    y: (self.y.0, self.y.1),
                    z: (self.z.0, self.z.1),
                })
            }
            // Handle all the Y overlaps
            if overlap.y.1 < self.y.1 {
                splits.push(Self {
                    x: (overlap.x.0, overlap.x.1),
                    y: (overlap.y.1 + 1, self.y.1),
                    z: (self.z.0, self.z.1),
                })
            }
            if overlap.y.0 > self.y.0 {
                splits.push(Self {
                    x: (overlap.x.0, overlap.x.1),
                    y: (self.y.0, overlap.y.0 - 1),
                    z: (self.z.0, self.z.1),
                })
            }
            // Handle all the z overlaps
            if overlap.z.0 > self.z.0 {
                splits.push(Self {
                    x: (overlap.x.0, overlap.x.1),
                    y: (overlap.y.0, overlap.y.1),
                    z: (self.z.0, overlap.z.0 - 1),
                })
            }
            if overlap.z.1 < self.z.1 {
                splits.push(Self {
                    x: (overlap.x.0, overlap.x.1),
                    y: (overlap.y.0, overlap.y.1),
                    z: (overlap.z.1 + 1, self.z.1),
                })
            }

            splits
        }

        pub fn count(&self) -> usize {
            (self.x.1 - self.x.0 + 1) as usize
                * (self.y.1 - self.y.0 + 1) as usize
                * (self.z.1 - self.z.0 + 1) as usize
        }
    }

    /// Naive parsing by splitting repeatedly.
    pub fn generator(input: &str) -> Vec<Command> {
        input
            .lines()
            .map(|line| {
                let (cmd, coords) = line.split_once(' ').expect("Must be a command and ranges");

                let mut coords = coords.split(',').map(|range| {
                    let (l, r) = range[2..].split_once("..").expect("Ranges have two parts");

                    (
                        l.parse().expect("Must be int"),
                        r.parse().expect("Must be int"),
                    )
                });

                Command {
                    enable: cmd.as_bytes()[1] == b'n',
                    range: Range {
                        x: coords.next().expect("Must be an x coord"),
                        y: coords.next().expect("Must be an y coord"),
                        z: coords.next().expect("Must be an z coord"),
                    },
                }
            })
            .collect()
    }

    /// Track all enabled regions of the grid, with the invariant that no region is tracked twice.
    /// Whenever a command overlaps with an existing enabled region, we disable the overlapping
    /// section, then add the command if it's an `on`.
    ///
    /// This doesn't use anything fancy to determine which regions overlap, as the n^2 variant is
    /// fast enough.
    pub fn counter(commands: &[Command]) -> usize {
        let mut lit = Vec::with_capacity(commands.len() / 2);

        for cmd in commands.iter() {
            let mut overlap_ids = Vec::new();
            let mut new_ranges = Vec::new();

            // Find any currently lit regions that overlap with us and remove the overlap from the
            // list.
            for (i, &currently_lit) in lit.iter().enumerate() {
                if let Some(overlap) = cmd.range.overlap(currently_lit) {
                    new_ranges.extend(currently_lit.remove(overlap));
                    overlap_ids.push(i);
                }
            }

            // Remove from the end first to avoid invalidating our indices.
            for id in overlap_ids.into_iter().rev() {
                lit.swap_remove(id);
            }
            lit.extend(new_ranges);

            if cmd.enable {
                lit.push(cmd.range);
            }
        }

        lit.into_iter().map(|range| range.count()).sum::<usize>()
    }

    /// Filter to only the initialization commands, then let [`counter`] do the real work.
    pub fn part1(commands: &[Command]) -> usize {
        let first_commands = commands
            .iter()
            .filter(|cmd| {
                let r = cmd.range;

                r.x.0 >= -50
                    && r.x.1 <= 50
                    && r.y.0 >= -50
                    && r.y.1 <= 50
                    && r.z.0 >= -50
                    && r.z.1 <= 50
            })
            .copied()
            .collect::<Vec<_>>();

        counter(&first_commands)
    }

    /// Let [`counter`] do the real work.
    pub fn part2(commands: &[Command]) -> usize {
        counter(commands)
    }
}

/// Fairly tedious code to generate the different state transitions that are possible and then
/// search between those for an optimal solution.
///
/// The main interesting optimization here lies in the representation of [`day23::State`], which
/// requires only 16 bytes to represent the board.
pub mod day23 {
    use bit::BitIndex;
    use fnv::FnvHashMap;

    /// A type to represent the cost of some [`Amphipod`]s moving.
    pub type Cost = usize;

    ///////////////////////////////////////////////////////////////////////////
    // Amphipods
    ///////////////////////////////////////////////////////////////////////////

    /// Naive amphipod representation.
    #[derive(Copy, Clone, Hash, PartialEq, Eq, Debug)]
    pub enum Amphipod {
        A,
        B,
        C,
        D,
    }

    impl Amphipod {
        /// The movement cost per step for the given amphipod.
        pub const fn cost(&self) -> Cost {
            match self {
                Amphipod::A => 1,
                Amphipod::B => 10,
                Amphipod::C => 100,
                Amphipod::D => 1000,
            }
        }

        /// Generate the corresponding Amphipod from an index.  This is useful for converting from
        /// integers.
        pub const fn from_index(index: usize) -> Self {
            match index {
                0 => Amphipod::A,
                1 => Amphipod::B,
                2 => Amphipod::C,
                3 => Amphipod::D,
                _ => unreachable!(),
            }
        }

        /// Return the target room for this amphipod (which also happens to be its index).
        pub const fn target(&self) -> usize {
            match self {
                Amphipod::A => 0,
                Amphipod::B => 1,
                Amphipod::C => 2,
                Amphipod::D => 3,
            }
        }
    }

    ///////////////////////////////////////////////////////////////////////////
    // Rooms
    ///////////////////////////////////////////////////////////////////////////

    /// Rooms contain up to four different Amphipods, each of which can represent four different
    /// values, and we need to be able to arbitrarily examine and rearrange rooms.
    ///
    /// Of particular note is that we only need to remove amphipods from rooms during the game
    /// simulation, as there's no need to store amphipods that have reached their final location.
    ///
    /// To save space and optimize our memory allocations/lookup tables, we implement a tiny vector
    /// to store Amphipods, letting us represent all four rooms in 8 bytes.  Various bit
    /// manipulation is needed, and we only implement a few of the standard methods that we need.
    #[derive(Copy, Clone, Hash, PartialEq, Eq)]
    pub struct Room(pub u16);

    /// We want to be able to iterate over rooms to avoid significant refactoring of our code that
    /// initially represented [`Room`]s as [`arrayvec::ArrayVec`]s.
    ///
    /// This implements the naive implementation of iteration over [`Room`]s.
    pub struct RoomIterator<'a> {
        /// The room we're iterating over.
        pub room: &'a Room,

        /// The next index to yield from the iterator.
        pub i: usize,
    }

    impl Room {
        /// The number of bits in our underlying implementation.  Ideally this could be generic.
        pub const BITS: usize = u16::BITS as usize;
        /// The number of bits we use to store the array's current length.
        pub const LEN_BITS: usize = 3;
        /// The number of bits needed to store each item.
        pub const ITEM_BITS: usize = 2;

        /// New [`Room`]s are very simple.
        pub const fn new() -> Self {
            Self(0)
        }

        /// Returns the current number of [`Amphipod`]s in the room.
        pub fn len(&self) -> usize {
            self.0.bit_range(0..Room::LEN_BITS) as usize
        }

        /// A slight optimization of `self.len() == 0` that avoids unnecessary bit manipulation by
        /// directly comparing to 0.
        pub fn is_empty(&self) -> bool {
            self.0 == 0
        }

        /// Return the last amphipod in the room.
        ///
        /// NOTE: only valid for non-empty rooms.
        pub fn peek(&self) -> Amphipod {
            debug_assert!(!self.is_empty(), "Trying to peek an empty Room");

            let start = Room::LEN_BITS + (self.len() - 1) * Room::ITEM_BITS;
            Amphipod::from_index(self.0.bit_range(start..start + Room::ITEM_BITS) as usize)
        }

        /// Get the amphipod at the given index in the room.
        ///
        /// NOTE: only valid for non-empty rooms.
        pub fn get(&self, index: usize) -> Amphipod {
            debug_assert!(
                index < self.len(),
                "Trying to access too far into the room! {} >= {}",
                index,
                self.len()
            );
            let start = Room::LEN_BITS + index * Room::ITEM_BITS;
            Amphipod::from_index(self.0.bit_range(start..start + Room::ITEM_BITS) as usize)
        }

        /// Drop the last amphipod from the room - like [`Vec::pop`], but our use-case doesn't need
        /// its value.
        pub fn drop_last(&mut self) {
            let len = self.len();

            if len == 0 {
                return;
            }

            let start = Room::LEN_BITS + (len - 1) * Room::ITEM_BITS;

            self.0.set_bit_range(0..Room::LEN_BITS, (len - 1) as u16);
            self.0.set_bit_range(start..start + Room::ITEM_BITS, 0);
        }

        /// Remove the amphipod at the given index in the room.
        ///
        /// NOTE: only valid for non-empty rooms.
        pub fn remove(&mut self, index: usize) {
            let len = self.len();

            debug_assert!(
                index < len,
                "Trying to remove too far into the room! {} >= {}",
                index,
                len
            );

            let remainder = Room::LEN_BITS + (index + 1) * Room::ITEM_BITS;
            let target = Room::LEN_BITS + index * Room::ITEM_BITS;

            self.0.set_bit_range(0..Room::LEN_BITS, (len - 1) as u16);
            self.0.set_bit_range(
                target..Room::BITS,
                self.0.bit_range(remainder..Room::BITS as usize) as u16,
            );
        }

        /// Insert an amphipod at the given index in the room, shifting amphipods after it
        /// backwards.
        ///
        /// NOTE: `index` must be in `0..=self.len()`.
        pub fn insert(&mut self, index: usize, amphipod: Amphipod) {
            let len = self.len();

            debug_assert!(
                index <= len,
                "Trying to insert too far into the room! {} > {}",
                index,
                len
            );

            let target = Room::LEN_BITS + index * Room::ITEM_BITS;
            let remainder = Room::LEN_BITS + (index + 1) * Room::ITEM_BITS;

            self.0.set_bit_range(0..Room::LEN_BITS, (len + 1) as u16);
            self.0.set_bit_range(
                remainder..Room::BITS,
                self.0.bit_range(target..Room::BITS as usize) as u16,
            );
            self.0
                .set_bit_range(target..target + Room::ITEM_BITS, amphipod.target() as u16);
        }

        /// Returns an iterator over the elements of the room.
        pub fn iter(&self) -> RoomIterator {
            RoomIterator { i: 0, room: self }
        }
    }

    impl<'a> Iterator for RoomIterator<'a> {
        type Item = Amphipod;

        fn next(&mut self) -> Option<Self::Item> {
            if self.i < self.room.len() {
                self.i += 1;
                Some(self.room.get(self.i - 1))
            } else {
                None
            }
        }
    }

    ///////////////////////////////////////////////////////////////////////////
    // State
    ///////////////////////////////////////////////////////////////////////////

    /// There are 7 live spaces in the hallway, since you can never block a door.
    pub const HALLWAY_SPACES: usize = 7;
    /// There are four rooms.
    pub const ROOM_COUNT: usize = 4;

    /// Represent the current state of the game in a fairly space-efficient layout.
    ///
    /// We're going to be hashing and cloning these frequently, so we want to optimize for space.
    /// We know we don't need to store most of the hallway, and we can represent the four rooms as
    /// [`Room`]s, which fit in u16s, giving us 16 bytes total once counting for padding.
    ///
    /// We could optimize further by compressing `hallway` similarly, but it won't easily yield
    /// results.  Rooms could technically fit in only 10 bits (2 for len, 2 * 4 slots), leaving 24
    /// bits to fit 7 elements of 3 bits each (2 per amphipod + 1 bit for [`Option`] tagging), but
    /// this would require us to represent `State` as a [`u64`] and do bit manipulation for
    /// everything.
    /// Since that representation would be 61 bits already, being any less efficient in
    /// representation would put us at >64 bits, which with padding will fill out to 16 bytes,
    /// making it not worth move effort here.
    #[derive(Clone, Hash, PartialEq, Eq)]
    pub struct State {
        hallway: [Option<Amphipod>; HALLWAY_SPACES],
        rooms: [Room; ROOM_COUNT],
    }

    ///////////////////////////////////////////////////////////////////////////
    // Implementation
    ///////////////////////////////////////////////////////////////////////////

    /// Hacky parsing code that just grabs the specific bytes that are needed.
    pub fn generator(input: &str) -> State {
        State {
            hallway: Default::default(),
            rooms: {
                let mut rooms = [Room::new(); ROOM_COUNT];

                input.lines().skip(2).take(2).for_each(|line| {
                    let bytes = line.as_bytes();

                    for offset in [3, 5, 7, 9] {
                        rooms[(offset - 3) / 2]
                            .insert(0, Amphipod::from_index((bytes[offset] - b'A') as usize));
                    }
                });

                rooms
            },
        }
    }

    /// Generate transitions from one state to all other possible ones, then use
    /// [A*](https://en.wikipedia.org/wiki/A*_search_algorithm) to
    /// search for the cheapest one.
    ///
    /// For our A* heuristic, we simply assume amphipods can't interfere with each other and
    /// compute the total cost for them to move to the end state in that model.
    ///
    /// Additionally, we implement the priority queue via a [`std::collections::BTreeMap`]
    /// mapping from the heuristic score to a vector of [`State`]s with that score, since that
    /// appears to be substantially more efficient for our use-case than existing priority queue
    /// libraries.
    pub fn solve(mut initial_state: State) -> Cost {
        let mut initial_cost = 0;

        // Remove amphipods that are already parked in their correct location, and set the initial
        // cost to the cost needed to fill the rooms rather than just the first spot in the room.
        for i in 0..initial_state.rooms.len() {
            // Count the number of amphipods that are already at the end of their correct room, and
            // therefore won't need to move.
            let remove_count = initial_state.rooms[i]
                .iter()
                .take_while(|amphipod| amphipod.target() == i)
                .count();

            // Remove the already existing amphipods.
            for _ in 0..remove_count {
                initial_state.rooms[i].remove(0);
            }

            // Assume the rest of this algorithm will move amphipods to the first square of the
            // room, and count the cost needed to fill up the rest of the room.
            let room_cost = Amphipod::from_index(i).cost();
            for depth in 0..initial_state.rooms[i].len() {
                initial_cost += depth * room_cost;
            }

            // Assume the rest of the algorithm will move amphipods out of the first square of the
            // room, and count the cost needed to move to that square from their starting position.
            for (depth, starter) in initial_state.rooms[i].iter().enumerate() {
                initial_cost += (initial_state.rooms[i].len() - depth - 1) * starter.cost();
            }
        }

        let mut frontier = std::collections::BTreeMap::<Cost, Vec<State>>::new();
        let mut best_cost = FnvHashMap::<State, Cost>::default();
        let mut heuristic_cost = FnvHashMap::<State, Cost>::default();

        // Frontier maps best heuristic score -> state
        frontier.insert(initial_cost, vec![initial_state.clone()]);
        best_cost.insert(initial_state.clone(), initial_cost);
        heuristic_cost.insert(initial_state, initial_cost);

        while let Some(&cost) = frontier.keys().next() {
            let states = frontier.remove(&cost).expect("Just found this key");

            for state in states.into_iter() {
                if heuristic_cost[&state] < cost {
                    continue;
                }
                let cost = best_cost[&state];

                if state.hallway.iter().all(|space| space.is_none())
                    && state.rooms.iter().all(|room| room.is_empty())
                {
                    // We're done!
                    return cost;
                }

                let mut visit = |cost_addition, new_state: State| {
                    let existing_cost = *best_cost.get(&new_state).unwrap_or(&Cost::MAX);
                    let new_cost = cost + cost_addition;

                    if existing_cost <= new_cost {
                        // We already have a better way to get to this state.
                        return;
                    }

                    // For a heuristic, we'll figure out how much it costs to move all amphipods to
                    // their target room, assuming nothing gets in their way.
                    let heuristic = new_state
                        .hallway
                        .iter()
                        .enumerate()
                        .filter_map(|(i, spot)| {
                            spot.map(|amphipod| move_cost(&amphipod, i, amphipod.target()))
                        })
                        .sum::<usize>()
                        + new_state
                            .rooms
                            .iter()
                            .enumerate()
                            .map(|(i, room)| {
                                room.iter()
                                    .map(|amphipod| {
                                        // We'll never be able to move to our own room without
                                        // travelling in and out, so we don't do anything special
                                        // for the `target == i` case.
                                        (2 + 2 * ((amphipod.target() - i) as isize).abs()) as usize
                                            * amphipod.cost()
                                    })
                                    .sum::<usize>()
                            })
                            .sum::<usize>();

                    let distance_buf = frontier
                        .entry(new_cost + heuristic)
                        // In practice, 4 fits the vast majority of our vector sizes and avoids
                        // most reallocations.
                        .or_insert_with(|| Vec::with_capacity(4));
                    distance_buf.push(new_state.clone());

                    best_cost.insert(new_state.clone(), new_cost);
                    heuristic_cost.insert(new_state, new_cost + heuristic);
                };

                // How much does it cost for the given amphipod to move between a hallways spot and
                // a room.
                fn move_cost(amphipod: &Amphipod, hall_index: usize, room_index: usize) -> usize {
                    let hall_location = match hall_index {
                        0 => 0,
                        1 => 1,
                        2 => 3,
                        3 => 5,
                        4 => 7,
                        5 => 9,
                        6 => 10,
                        _ => unreachable!(),
                    };
                    let hall_distance =
                        ((2 + 2 * room_index - hall_location) as isize).abs() as usize;

                    (1 + hall_distance) * amphipod.cost()
                }

                // Try to move out of our rooms first.
                for (i, room) in state.rooms.iter().enumerate() {
                    if room.is_empty() {
                        continue;
                    }

                    // First element is at the end of the vector.
                    let moving = room.peek();

                    // We're moving to somewhere other than where we currently are (since we
                    // already threw out amphipods that are in the right spot already).
                    // Move into the available hallway spots.
                    let mut new_state = state.clone();
                    new_state.rooms[i].drop_last();

                    for spot in (0..=i + 1)
                        .rev()
                        .take_while(|&spot| state.hallway[spot].is_none())
                        .chain(
                            (i + 2..HALLWAY_SPACES)
                                .take_while(|&spot| state.hallway[spot].is_none()),
                        )
                    {
                        let mut new_state = new_state.clone();
                        new_state.hallway[spot] = Some(moving);

                        visit(move_cost(&moving, spot, i), new_state);
                    }
                }

                // If we're in the hallway and our target room is open, try to move into it.
                for (i, &moving) in state.hallway.iter().enumerate() {
                    // There's something in the hallway here.
                    if let Some(moving) = moving {
                        let target = moving.target();

                        if !state.rooms[target].is_empty() {
                            // Can't move to the target room, since it's currently occupied.
                            continue;
                        }

                        // Check if anything is blocking us from moving to our destination.
                        let fits = if i < target + 1 {
                            // We're approaching from the left.
                            (i + 1..=target + 1).all(|spot| state.hallway[spot].is_none())
                        } else if i > target + 2 {
                            // We're approaching from the right.
                            (target + 2..i).all(|spot| state.hallway[spot].is_none())
                        } else {
                            // We're right next to the target so definitely fit in.
                            true
                        };

                        if !fits {
                            continue;
                        }

                        let mut new_state = state.clone();
                        new_state.hallway[i] = None;

                        visit(move_cost(&moving, i, target), new_state);
                    }
                }
            }
        }

        unreachable!()
    }

    /// Directly calls [`solve`] on the input.
    pub fn part1(input: &State) -> Cost {
        solve(input.clone())
    }

    /// Same as [`part1`], except with a few lines added to the input.
    pub fn part2(input: &State) -> Cost {
        let mut modified = input.clone();

        modified.rooms[0].insert(1, Amphipod::D);
        modified.rooms[0].insert(2, Amphipod::D);
        modified.rooms[1].insert(1, Amphipod::B);
        modified.rooms[1].insert(2, Amphipod::C);
        modified.rooms[2].insert(1, Amphipod::A);
        modified.rooms[2].insert(2, Amphipod::B);
        modified.rooms[3].insert(1, Amphipod::C);
        modified.rooms[3].insert(2, Amphipod::A);

        solve(modified)
    }
}

/// The instruction stream is [`day24::MODEL_DIGITS`] similar sequences (each differing by the arguments
/// to three instructions) implementing rudimentary push/pop with some simple operations on the
/// inputs.
///
/// The differing instructions are `div z [1|26]`, `add x N`, and `add y N`.
///
/// We have two real pathways to handle: push and pop.
///
/// In the push pathway, we don't care about `add x`, since the result always be out of range
/// of the succeeding input check, so the instruction stream is effectively doing `push(input +
/// add y)`.
///
/// In the pop pathway, `add x` serves as a useful check against the input, and if it matches
/// we skip the next push instruction entirely.  Since we only do one pop instruction per
/// instruction stream, we know that we'll only be successful if `input = pop() + add x`.
///
/// This means we can pair our push/pop instructions and find the max values that'll fit
/// into a single digit (where `push.input + push.arg == pop.input - pop.arg`) by first
/// maximizing for push.input (further left in the model number), then solving for pop.input.
pub mod day24 {
    use arrayvec::ArrayVec;
    use itertools::Itertools;

    /// Models are always 14 digit numbers.
    pub const MODEL_DIGITS: usize = 14;

    /// Instruction arguments can be negative.
    pub type Arg = i32;

    /// Each integer being parsed consists of 18 lines of very similar code.
    /// We'll cheat and only represent it with the pieces that are different.
    ///
    /// Part of this instruction stream is implementing push/pop via an integer and
    /// multiplication/division, and we only care about one piece of data in each case.
    #[derive(Debug, Copy, Clone)]
    pub enum StackOp {
        Push(Arg),
        Pop(Arg),
    }

    /// Gross parsing code that makes some strong assumptions about the instruction format in order
    /// to only look at the lines that matter.
    pub fn generator(input: &str) -> Vec<StackOp> {
        const INTEGER_INSTRUCTIONS: usize = 18;

        fn instruction_arg(instruction: Option<&str>) -> Arg {
            let ins = instruction
                .expect("Must be INTEGER_INSTRUCTIONS per integer")
                .trim_end();

            ins[ins
                .rfind(' ')
                .expect("Must be an argument to the instruction")
                + 1..]
                .parse()
                .expect("Argument must be an integer")
        }

        input
            .lines()
            .into_iter()
            .chunks(INTEGER_INSTRUCTIONS)
            .into_iter()
            .map(|mut ins| {
                if instruction_arg(ins.by_ref().nth(4)) == 1 {
                    StackOp::Push(instruction_arg(ins.nth(10)))
                } else {
                    StackOp::Pop(instruction_arg(ins.next()))
                }
            })
            .collect()
    }

    /// Directly interpret the stack machine.
    pub fn interpret_stack<const MAXIMIZE: bool>(ops: &[StackOp]) -> usize {
        let mut stack = ArrayVec::<_, MODEL_DIGITS>::new();
        let mut result = [0; MODEL_DIGITS];

        for (i, ins) in ops.iter().enumerate() {
            match ins {
                StackOp::Push(y_add) => stack.push((i, y_add)),
                StackOp::Pop(x_add) => {
                    let (push_i, y_add) = stack
                        .pop()
                        .expect("Must've been a push operation for the model to succeed");

                    // Can't push something that'll make push.y_add + pop.x_add take up more than
                    // one digit.
                    assert!(x_add + y_add <= 9, "Input needs to be negative");

                    let push_max = if MAXIMIZE {
                        std::cmp::min(9, 9 - (y_add + x_add))
                    } else {
                        // 1 is the minimum digit for some reason
                        std::cmp::max(1, 1 - (y_add + x_add))
                    };
                    let pop_max = push_max + y_add + x_add;

                    result[push_i] = push_max;
                    result[i] = pop_max;
                }
            }
        }

        result
            .into_iter()
            .fold(0, |acc, digit| 10 * acc + digit as usize)
    }

    /// Calls to [`interpret_stack`].
    pub fn part1(ops: &[StackOp]) -> usize {
        interpret_stack::<true>(ops)
    }

    /// Calls to [`interpret_stack`].
    pub fn part2(ops: &[StackOp]) -> usize {
        interpret_stack::<false>(ops)
    }
}

/// Another slight twist on Conway's game of life.
pub mod day25 {
    use arrayvec::ArrayVec;

    /// Cucumbers either have a direction or don't exist.
    #[derive(Copy, Clone, PartialEq, Eq, Debug)]
    pub enum Cucumber {
        Vacant,
        East,
        South,
    }

    /// Width of the grid
    pub const WIDTH: usize = 139;
    /// Height of the grid
    pub const HEIGHT: usize = 137;

    /// Represent the set of cucumbers in a fixed 2D array, since we want the compiler to optimize
    /// copying and overwriting grids.
    pub type CucumberGrid = [[Cucumber; WIDTH]; HEIGHT];

    /// A naive parsing approach.
    pub fn generator(input: &str) -> CucumberGrid {
        input
            .lines()
            .map(|line| {
                line.trim_end()
                    .bytes()
                    .map(|b| match b {
                        b'v' => Cucumber::South,
                        b'>' => Cucumber::East,
                        _ => Cucumber::Vacant,
                    })
                    .collect::<ArrayVec<_, WIDTH>>()
                    .as_slice()
                    .try_into()
                    .expect("Grid is WIDTH wide")
            })
            .collect::<ArrayVec<_, HEIGHT>>()
            .as_slice()
            .try_into()
            .expect("Grid is HEIGHT high")
    }

    /// Run the migration code east then south, until no cucumbers were moved.
    /// While it may seem like we can repeatedly modify the initial grid, this runs into trouble
    /// when cucumbers wrap around, so it's easiest to modify a copy during each iteration.
    pub fn part1(input: &CucumberGrid) -> usize {
        let mut grid = *input;

        for steps in 1.. {
            let mut moved = grid;
            let mut shuffled = false;

            // Shuffle east
            for y in 0..HEIGHT {
                for x in 0..WIDTH {
                    if grid[y][x] == Cucumber::East {
                        let east = (x + 1) % WIDTH;

                        if grid[y][east] == Cucumber::Vacant {
                            // Free spot for us, shuffle over.
                            moved[y][x] = Cucumber::Vacant;
                            moved[y][east] = Cucumber::East;
                            shuffled = true;
                        }
                    }
                }
            }

            // We've updated the grid for the east step, so need to use that information when we
            // move south.
            grid = moved;

            // Shuffle south
            for y in 0..HEIGHT {
                for x in 0..WIDTH {
                    if grid[y][x] == Cucumber::South {
                        let south = (y + 1) % HEIGHT;

                        if grid[south][x] == Cucumber::Vacant {
                            // Free spot for us, shuffle over.
                            moved[y][x] = Cucumber::Vacant;
                            moved[south][x] = Cucumber::South;
                            shuffled = true;
                        }
                    }
                }
            }

            if !shuffled {
                // We didn't move at all this step.
                return steps;
            }

            grid = moved;
        }

        unreachable!()
    }

    /// There is no second part!
    pub fn part2(_: &CucumberGrid) -> &'static str {
        "merry christmas!"
    }
}

/// Benchmark results and information about the systems I benchmarked on.
///
/// Timing is done by calling [`std::time::Instant::now`] before and after each function runs, so
/// there's a little bit of extra overhead.
///
/// These results aren't scientific - each puzzle is run once, in order, on a varyingly loaded
/// desktop system.  However, they should be generally reproduceable.
pub mod benchmarks {
    /// My standard desktop and development system.
    pub struct I6700K {}

    /// An original M1 Macbook Pro.
    pub struct M1Mac {}

    /// A high-end desktop system based on an AMD 5950X.
    pub struct AMD5950X {}

    /// A placeholder trait to show information about benchmarked systems.
    pub trait SystemInfo {}

    /// A placeholder trait to show benchmark results for systems.
    pub trait BenchmarkResult {}

    /// Intel Core i7-6700K
    /// - 128KB L1D$
    /// - 1 MB L2$
    /// - DDR4-3200MHz CL16-16-16-36
    /// - Hyper-threading enabled
    /// - 4.00GHz base clock
    impl SystemInfo for I6700K {}

    /// AMD Ryzen 9 5950X 16-Core Processor
    /// - 512KB L1D$
    /// - 8 MB L2$
    /// - 64 MB L3$
    /// - DDR4-3600MHz CL16-19-19-39
    /// - Hyper-threading enabled
    /// - 3.4GHz base clock
    impl SystemInfo for AMD5950X {}

    /// Macbook Pro M1 2020
    /// - 128KB L1D$
    /// - 12 MB L2$
    /// - Unknown LPDDR4
    /// - No hyperthreading
    /// - 3.2GHz base clock
    impl SystemInfo for M1Mac {}

    /// ```text
    /// Day 1 (35.85µs)
    ///  · Generator (34.62µs)
    ///  · Part 1 (227.00ns) .............. 1475
    ///  · Part 2 (996.00ns) .............. 1515
    ///
    /// Day 2 (30.49µs)
    ///  · Generator (20.08µs)
    ///  · Part 1 (5.07µs) ................ 1604850
    ///  · Part 2 (5.35µs) ................ 1685186100
    ///
    /// Day 3 (49.95µs)
    ///  · Generator (21.12µs)
    ///  · Part 1 (4.99µs) ................ 2498354
    ///  · Part 2 (23.83µs) ............... 3277956
    ///
    /// Day 4 (171.21µs)
    ///  · Generator (46.96µs)
    ///  · Part 1 (29.52µs) ............... 23177
    ///  · Part 2 (94.74µs) ............... 6804
    ///
    /// Day 5 (1.44ms)
    ///  · Generator (41.57µs)
    ///  · Part 1 (854.33µs) .............. 7644
    ///  · Part 2 (543.85µs) .............. 18627
    ///
    /// Day 6 (3.39µs)
    ///  · Generator (3.28µs)
    ///  · Part 1 (31.00ns) ............... 394994
    ///  · Part 2 (81.00ns) ............... 1765974267455
    ///
    /// Day 7 (56.37µs)
    ///  · Generator (50.52µs)
    ///  · Part 1 (283.00ns) .............. 343441
    ///  · Part 2 (5.56µs) ................ 98925151
    ///
    /// Day 8 (126.20µs)
    ///  · Generator (116.04µs)
    ///  · Part 1 (1.99µs) ................ 495
    ///  · Part 2 (8.17µs) ................ 1055164
    ///
    /// Day 9 (369.12µs)
    ///  · Generator (10.55µs)
    ///  · Part 1 (79.46µs) ............... 577
    ///  · Part 2 (279.11µs) .............. 1069200
    ///
    /// Day 10 (145.22µs)
    ///  · Generator (5.31µs)
    ///  · Part 1 (69.80µs) ............... 290691
    ///  · Part 2 (70.12µs) ............... 2768166558
    ///
    /// Day 11 (322.08µs)
    ///  · Generator (761.00ns)
    ///  · Part 1 (58.02µs) ............... 1588
    ///  · Part 2 (263.31µs) .............. 517
    ///
    /// Day 12 (2.22ms)
    ///  · Generator (4.17µs)
    ///  · Part 1 (100.17µs) .............. 5457
    ///  · Part 2 (2.12ms) ................ 128506
    ///
    /// Day 13 (130.95µs)
    ///  · Generator (60.56µs)
    ///  · Part 1 (14.27µs) ............... 847
    ///  · Part 2 (56.12µs) ............... BCZRCEAB
    ///
    /// Day 14 (16.25µs)
    ///  · Generator (8.54µs)
    ///  · Part 1 (2.37µs) ................ 3230
    ///  · Part 2 (5.34µs) ................ 3542388214529
    ///
    /// Day 15 (12.13ms)
    ///  · Generator (8.18µs)
    ///  · Part 1 (431.07µs) .............. 537
    ///  · Part 2 (11.69ms) ............... 2881
    ///
    /// Day 16 (23.98µs)
    ///  · Generator (8.70µs)
    ///  · Part 1 (7.16µs) ................ 1007
    ///  · Part 2 (8.12µs) ................ 834151779165
    ///
    /// Day 17 (32.88µs)
    ///  · Generator (1.24µs)
    ///  · Part 1 (30.00ns) ............... 13041
    ///  · Part 2 (31.61µs) ............... 1031
    ///
    /// Day 18 (356.70µs)
    ///  · Generator (16.40µs)
    ///  · Part 1 (236.41µs) .............. 4480
    ///  · Part 2 (103.89µs) .............. 4676
    ///
    /// Day 19 (3.40ms)
    ///  · Generator (474.76µs)
    ///  · Part 1 (1.46ms) ................ 472
    ///  · Part 2 (1.46ms) ................ 12092
    ///
    /// Day 20 (2.70ms)
    ///  · Generator (10.29µs)
    ///  · Part 1 (48.71µs) ............... 4917
    ///  · Part 2 (2.64ms) ................ 16389
    ///
    /// Day 21 (538.75µs)
    ///  · Generator (204.00ns)
    ///  · Part 1 (1.10µs) ................ 513936
    ///  · Part 2 (537.45µs) .............. 105619718613031
    ///
    /// Day 22 (2.24ms)
    ///  · Generator (106.17µs)
    ///  · Part 1 (28.67µs) ............... 527915
    ///  · Part 2 (2.10ms) ................ 1218645427221987
    ///
    /// Day 23 (42.24ms)
    ///  · Generator (643.00ns)
    ///  · Part 1 (3.51ms) ................ 15338
    ///  · Part 2 (38.73ms) ............... 47064
    ///
    /// Day 24 (9.05µs)
    ///  · Generator (8.72µs)
    ///  · Part 1 (157.00ns) .............. 99919765949498
    ///  · Part 2 (172.00ns) .............. 24913111616151
    ///
    /// Day 25 (22.42ms)
    ///  · Generator (22.47µs)
    ///  · Part 1 (22.39ms) ............... 305
    ///  · Part 2 (29.00ns) ............... merry christmas!
    ///
    /// Overall runtime (91.73ms)
    /// ```
    impl BenchmarkResult for I6700K {}

    /// ```text
    /// Day 1 (22.78µs)
    ///  · Generator (21.62µs)
    ///  · Part 1 (280.00ns) .............. 1475
    ///  · Part 2 (880.00ns) .............. 1515
    ///
    /// Day 2 (21.56µs)
    ///  · Generator (14.27µs)
    ///  · Part 1 (3.65µs) ................ 1604850
    ///  · Part 2 (3.64µs) ................ 1685186100
    ///
    /// Day 3 (39.94µs)
    ///  · Generator (15.98µs)
    ///  · Part 1 (2.98µs) ................ 2498354
    ///  · Part 2 (20.98µs) ............... 3277956
    ///
    /// Day 4 (124.79µs)
    ///  · Generator (28.55µs)
    ///  · Part 1 (22.12µs) ............... 23177
    ///  · Part 2 (74.12µs) ............... 6804
    ///
    /// Day 5 (1.18ms)
    ///  · Generator (28.43µs)
    ///  · Part 1 (671.87µs) .............. 7644
    ///  · Part 2 (475.67µs) .............. 18627
    ///
    /// Day 6 (2.08µs)
    ///  · Generator (2.00µs)
    ///  · Part 1 (20.00ns) ............... 394994
    ///  · Part 2 (60.00ns) ............... 1765974267455
    ///
    /// Day 7 (36.47µs)
    ///  · Generator (32.81µs)
    ///  · Part 1 (200.00ns) .............. 343441
    ///  · Part 2 (3.46µs) ................ 98925151
    ///
    /// Day 8 (87.72µs)
    ///  · Generator (81.29µs)
    ///  · Part 1 (830.00ns) .............. 495
    ///  · Part 2 (5.60µs) ................ 1055164
    ///
    /// Day 9 (267.03µs)
    ///  · Generator (6.41µs)
    ///  · Part 1 (51.70µs) ............... 577
    ///  · Part 2 (208.92µs) .............. 1069200
    ///
    /// Day 10 (93.28µs)
    ///  · Generator (5.44µs)
    ///  · Part 1 (42.43µs) ............... 290691
    ///  · Part 2 (45.41µs) ............... 2768166558
    ///
    /// Day 11 (281.88µs)
    ///  · Generator (440.00ns)
    ///  · Part 1 (48.18µs) ............... 1588
    ///  · Part 2 (233.26µs) .............. 517
    ///
    /// Day 12 (1.72ms)
    ///  · Generator (2.78µs)
    ///  · Part 1 (74.48µs) ............... 5457
    ///  · Part 2 (1.65ms) ................ 128506
    ///
    /// Day 13 (102.18µs)
    ///  · Generator (47.02µs)
    ///  · Part 1 (12.09µs) ............... 847
    ///  · Part 2 (43.07µs) ............... BCZRCEAB
    ///
    /// Day 14 (11.25µs)
    ///  · Generator (6.24µs)
    ///  · Part 1 (1.55µs) ................ 3230
    ///  · Part 2 (3.46µs) ................ 3542388214529
    ///
    /// Day 15 (8.38ms)
    ///  · Generator (5.14µs)
    ///  · Part 1 (309.87µs) .............. 537
    ///  · Part 2 (8.07ms) ................ 2881
    ///
    /// Day 16 (14.29µs)
    ///  · Generator (4.75µs)
    ///  · Part 1 (4.38µs) ................ 1007
    ///  · Part 2 (5.16µs) ................ 834151779165
    ///
    /// Day 17 (18.23µs)
    ///  · Generator (770.00ns)
    ///  · Part 1 (30.00ns) ............... 13041
    ///  · Part 2 (17.43µs) ............... 1031
    ///
    /// Day 18 (246.76µs)
    ///  · Generator (9.80µs)
    ///  · Part 1 (162.87µs) .............. 4480
    ///  · Part 2 (74.09µs) ............... 4676
    ///
    /// Day 19 (2.71ms)
    ///  · Generator (428.78µs)
    ///  · Part 1 (1.16ms) ................ 472
    ///  · Part 2 (1.12ms) ................ 12092
    ///
    /// Day 20 (1.25ms)
    ///  · Generator (6.89µs)
    ///  · Part 1 (31.56µs) ............... 4917
    ///  · Part 2 (1.21ms) ................ 16389
    ///
    /// Day 21 (334.75µs)
    ///  · Generator (120.00ns)
    ///  · Part 1 (990.00ns) .............. 513936
    ///  · Part 2 (333.64µs) .............. 105619718613031
    ///
    /// Day 22 (1.36ms)
    ///  · Generator (78.25µs)
    ///  · Part 1 (18.96µs) ............... 527915
    ///  · Part 2 (1.26ms) ................ 1218645427221987
    ///
    /// Day 23 (31.25ms)
    ///  · Generator (290.00ns)
    ///  · Part 1 (2.79ms) ................ 15338
    ///  · Part 2 (28.45ms) ............... 47064
    ///
    /// Day 24 (5.67µs)
    ///  · Generator (5.45µs)
    ///  · Part 1 (110.00ns) .............. 99919765949498
    ///  · Part 2 (110.00ns) .............. 24913111616151
    ///
    /// Day 25 (13.90ms)
    ///  · Generator (16.77µs)
    ///  · Part 1 (13.88ms) ............... 305
    ///  · Part 2 (20.00ns) ............... merry christmas!
    ///
    /// Overall runtime (63.70ms)
    /// ```
    impl BenchmarkResult for AMD5950X {}

    ///```text
    /// Day 1 (29.37µs)
    ///  · Generator (28.00µs)
    ///  · Part 1 (166.00ns) .............. 1475
    ///  · Part 2 (1.21µs) ................ 1515
    ///
    /// Day 2 (28.00µs)
    ///  · Generator (19.46µs)
    ///  · Part 1 (4.25µs) ................ 1604850
    ///  · Part 2 (4.29µs) ................ 1685186100
    ///
    /// Day 3 (46.17µs)
    ///  · Generator (19.75µs)
    ///  · Part 1 (3.50µs) ................ 2498354
    ///  · Part 2 (22.92µs) ............... 3277956
    ///
    /// Day 4 (152.25µs)
    ///  · Generator (38.21µs)
    ///  · Part 1 (25.88µs) ............... 23177
    ///  · Part 2 (88.17µs) ............... 6804
    ///
    /// Day 5 (909.92µs)
    ///  · Generator (33.50µs)
    ///  · Part 1 (467.17µs) .............. 7644
    ///  · Part 2 (409.25µs) .............. 18627
    ///
    /// Day 6 (2.67µs)
    ///  · Generator (2.42µs)
    ///  · Part 1 (0.00ns) ................ 394994
    ///  · Part 2 (250.00ns) .............. 1765974267455
    ///
    /// Day 7 (51.25µs)
    ///  · Generator (46.13µs)
    ///  · Part 1 (291.00ns) .............. 343441
    ///  · Part 2 (4.83µs) ................ 98925151
    ///
    /// Day 8 (112.92µs)
    ///  · Generator (104.96µs)
    ///  · Part 1 (541.00ns) .............. 495
    ///  · Part 2 (7.42µs) ................ 1055164
    ///
    /// Day 9 (338.46µs)
    ///  · Generator (7.79µs)
    ///  · Part 1 (60.79µs) ............... 577
    ///  · Part 2 (269.88µs) .............. 1069200
    ///
    /// Day 10 (118.21µs)
    ///  · Generator (4.92µs)
    ///  · Part 1 (55.13µs) ............... 290691
    ///  · Part 2 (58.17µs) ............... 2768166558
    ///
    /// Day 11 (242.25µs)
    ///  · Generator (625.00ns)
    ///  · Part 1 (46.04µs) ............... 1588
    ///  · Part 2 (195.58µs) .............. 517
    ///
    /// Day 12 (1.78ms)
    ///  · Generator (3.33µs)
    ///  · Part 1 (83.21µs) ............... 5457
    ///  · Part 2 (1.69ms) ................ 128506
    ///
    /// Day 13 (84.50µs)
    ///  · Generator (53.63µs)
    ///  · Part 1 (9.67µs) ................ 847
    ///  · Part 2 (21.21µs) ............... BCZRCEAB
    ///
    /// Day 14 (15.21µs)
    ///  · Generator (8.58µs)
    ///  · Part 1 (2.08µs) ................ 3230
    ///  · Part 2 (4.54µs) ................ 3542388214529
    ///
    /// Day 15 (10.75ms)
    ///  · Generator (7.29µs)
    ///  · Part 1 (388.88µs) .............. 537
    ///  · Part 2 (10.35ms) ............... 2881
    ///
    /// Day 16 (30.21µs)
    ///  · Generator (6.21µs)
    ///  · Part 1 (5.17µs) ................ 1007
    ///  · Part 2 (18.83µs) ............... 834151779165
    ///
    /// Day 17 (28.42µs)
    ///  · Generator (1.46µs)
    ///  · Part 1 (0.00ns) ................ 13041
    ///  · Part 2 (26.96µs) ............... 1031
    ///
    /// Day 18 (357.12µs)
    ///  · Generator (17.04µs)
    ///  · Part 1 (234.54µs) .............. 4480
    ///  · Part 2 (105.54µs) .............. 4676
    ///
    /// Day 19 (2.96ms)
    ///  · Generator (348.13µs)
    ///  · Part 1 (1.34ms) ................ 472
    ///  · Part 2 (1.28ms) ................ 12092
    ///
    /// Day 20 (1.56ms)
    ///  · Generator (10.17µs)
    ///  · Part 1 (41.58µs) ............... 4917
    ///  · Part 2 (1.51ms) ................ 16389
    ///
    /// Day 21 (356.62µs)
    ///  · Generator (291.00ns)
    ///  · Part 1 (750.00ns) .............. 513936
    ///  · Part 2 (355.58µs) .............. 105619718613031
    ///
    /// Day 22 (2.02ms)
    ///  · Generator (81.29µs)
    ///  · Part 1 (23.00µs) ............... 527915
    ///  · Part 2 (1.92ms) ................ 1218645427221987
    ///
    /// Day 23 (34.67ms)
    ///  · Generator (708.00ns)
    ///  · Part 1 (3.43ms) ................ 15338
    ///  · Part 2 (31.25ms) ............... 47064
    ///
    /// Day 24 (7.00µs)
    ///  · Generator (6.75µs)
    ///  · Part 1 (83.00ns) ............... 99919765949498
    ///  · Part 2 (166.00ns) .............. 24913111616151
    ///
    /// Day 25 (19.47ms)
    ///  · Generator (18.00µs)
    ///  · Part 1 (19.45ms) ............... 305
    ///  · Part 2 (0.00ns) ................ merry christmas!
    ///
    /// Overall runtime (76.63ms)
    /// ```
    impl BenchmarkResult for M1Mac {}
}